期刊文献+

基于改进窄带法的快速医学图像分割方法

A Fast Medical Image Segmentation Based on Improved Narrow Band Method
下载PDF
导出
摘要 基于曲线演化的水平集算法近来已被广泛应用于医学图像分割中,根据分割医学图像的鲁棒性实时性的要求,提出一种新的基于改进窄带法的图像分割方法INBM(Improved narrow band method)。INBM首先将均匀采样的图像映射到对数极坐标系中,由视网膜空间分辨率机制可知,注视点都在图像兴趣区,由此形成初始轮廓,然后用改进的窄带水平集(Level Set)方法演化曲线得到最终分割结果.改进窄带法是通过降低窄带区域内的水平集函数求解个数,来减少计算时间。实验结果表明,该方法能够快速、准确地得到医学图像的结果。 Curve evolution based Level Set has been widely used in medical image segmentation. However, the high computational cost excludes its use in robust real-time medical image segmentation. This paper presents a novel segmentation method based on Improved Narrow Band Method (INBM). Firstly, images are transformed from Cartesian space to log-polar coordinate space. The space invariant theory of human vision system guarantees the focus locates only on the interested region. Then an initial contour of the region is formed before we use INBM to get the segmentation results. INBM' s adopts reducing level set function solution's number of narrow band region to decrease the computation. Our experiment results show a significant decrease in computation time, and thus an effective speed up of medical image segmentation.
出处 《生命科学仪器》 2007年第7期28-33,共6页 Life Science Instruments
基金 国家自然科学基金资助项目(编号:60675015)
关键词 医学图像 图像分割 对数极坐标 水平集 窄带法 Level se Narrow Band Method (NBM)
  • 相关文献

参考文献10

  • 1[1]Kass M,Witkin A,Terzopoulos D.Snake:Active contour models[J].International Journal of Computer Vision,1987; 1(4):321-331
  • 2[2]Osher S.Sethian J A.Fronts propagating with curvature dependent speed:Algorithms based on the Hamilton-Jacobi Formulation[J].Journal of Computational Physics,1988,79:12-19
  • 3[3]Osher S.Fedkiw R.Level set methods and dynamic implicit surfaces[M].volume 153 of Applied Mathematical Sciences.Springer-Verlag,New York,2003.
  • 4[4]Y Shi,WC Karl.Real-time tracking using level sets[J].Computer Vision and Pattern Recognition.2005,2:34-41
  • 5[5]R Goldenberg,R Kimmel,E Rivlin,M Rudzsky.Fast Geodesic Active Contours[J].IEEE Transaction on Image Processing.2001,10(10):1467-1475.
  • 6[6]Freedman D,Zhang T.Active contours for tracking distributions[J].IEEE Transaction on Image Processing.2004,518 526.
  • 7[8]HM Gomes,RB Fisher.Primal sketch feature extraction from a log-polar image[J].Pattern Recognition Letters.2003,24:983-992.
  • 8陈朝阳,丁明跃,周成平.基于对数极坐标映射的目标搜索方法[J].红外与激光工程,1999,28(5):39-42. 被引量:8
  • 9[10]JS Suri,K Liu,S Singh et al.Shape recovery algorithm using level sets in 2-D/3-D medical imagery:A state-of-art review[J].IEEE Transactions on Information Technology in Biomedicine,2002; 6(1):8-28.
  • 10[11]Paragios N,Deriche R.Geodesic active contours and level sets for the detection and tracing of moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000; 22(3):266-280

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部