期刊文献+

基于广义回归神经网络的电力系统中长期负荷预测 被引量:17

Mid-& long-term load forecast based on GRNN
下载PDF
导出
摘要 在介绍广义回归神经网络(GRNN)基本算法、网络结构及平滑参数确定方法的基础上,提出将误差序列的均方值作为网络性能的评价指标并采用最小误差对应的平滑参数,建立了GRNN的预测模型。提出了确定输入神经元数目的方法:根据自回归模型阶次的选择经验初步确定输入神经元数目m;在m值附近进行搜索,对于每一个m值,确定平滑参数后,计算网络对学习样本的预测误差;根据BIC准则评价指标的最小值确定输入神经元数目。将模型应用于某地中长期电力网负荷预测,分别进行了单步预测和多步预测。与BP神经网络模型的预测进行比较,结果表明,采用该方法的预测精度明显高于BP模型,即使在训练集样本数据较少时,该方法的预测准确度仍然很高。 The basic arithmetic and network structure of GRNN(Generalized-Regression-Neural Network), as well as the determination of smoothing parameter,are introduced,based on which,a forecast model of GRNN is established by taking the mean square error of error series as the evaluation criterion and adopting the Smoothing parameter with minimal error. The method to decide the input neuron number is proposed:it is initialized to m by experience according to the order of self-regression model;the smoothing parameters for different input neuron numbers around m are used to calculate the corresponding forecast errors of training samples;the final input neuron number is decided according to the minimal evaluation index of BIC rule. The GRNN is applied to single- step and multi- step mid- & long-term load prediction. Compared with BP network,the presented method has higher forecast precision,even for sparse training samples.
出处 《电力自动化设备》 EI CSCD 北大核心 2007年第8期26-29,共4页 Electric Power Automation Equipment
关键词 广义神经网络 中长期负荷预测 时间序列预测 BIC准则 GRNN mid- & long-term load forecast time series prediction BIC rule
  • 相关文献

参考文献8

二级参考文献30

  • 1张雪莹,管霖,谢锦标.采用谱分析建模和基于人工神经网络的短期负荷预测方案[J].电网技术,2004,28(11):49-52. 被引量:8
  • 2胡上序.观测数据的分析与处理[M].杭州:浙江大学出版社,2002..
  • 3Specht D F. A general regression neural network. IEEE Transactions on Neural Networks, 1991,2(6) :568~576.
  • 4Tomandl D, Schober A. A modified general regression neuralnetwork (MGRNN) with new, efficient trainingalgorithms as a robust 'black box'-tool for data analysis. Neural Networks,2001,14(4) : 1023~1034.
  • 5Chtioui Y, Panigrahi S,Francl L. A generalized regression neural network and its application for leaf wentness prediction to forecast plant disease. Chemometrics and Intelligent Laboratory Systems, 1999,48 (1) : 47~58.
  • 6Leung M T,Chen A S,Daouk H. Forecasting exchange rates using general regression neural networks. Computers & Operation Research,2000,27(4) : 1093~1110.
  • 7Specht D F,Romsdahl H. Experience with adaptive probabilistic neural networks and adaptive general regression neural networks, In:Proceedings of the IEEE World Congress on Computational Intelligence, 1994,2:1203~1208.
  • 8RINALDY,R S. An efficient load model for analyzing demand side management impacts [J]. IEEE Transactions on Power Systems, 1993,8(3) : 1219-1226.
  • 9Tomandl D,Schober A. A modified general regression neural network with new,efficient training algorithms as a robust 'black box' -tool for data analysis [ J ]. Neural Networks. 2001.14 ( 4 ):1023 - 1034.
  • 10Chtioui Y, Panigrahi S, Francl L. A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease [ J ]. Chemometrics and Intelligent Laboratory Systems, 1999,48 ( 1 ) :47 -58.

共引文献140

同被引文献209

引证文献17

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部