期刊文献+

基于广义自回归条件异方差模型的负荷预测新方法 被引量:49

A New Method of Load Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model
下载PDF
导出
摘要 广义自回归条件异方差(GARCH)模型具有描述时间序列波动性的能力。文中将GARCH模型应用于短期负荷预测研究。通过分析经典时间序列模型随机扰动分量,论证了自回归条件异方差(ARCH)效应的存在性,探讨了经典模型同方差假设不满足的问题。进一步建立了GARCH模型,将时间序列的条件与方差纳入负荷预测模型,使用极大似然估计(MLE)获得模型参数估计。最后从实际预测效果的角度,将GARCH模型与经典模型进行了比较。实际算例结果表明该方法相比于经典模型有更贴近实际的理论假设和更强的预测能力。 The generalized autoregressive conditional heteroscedasticity (GARCH) model has the ability to describe the volatility of time series, A feasible approach to short-term load forecasting based on GARCH methodology is given. By analyzing the random disturbance series of the classical time series model, the existence of autoregressive conditional heteroscedasticity (ARCH) effect is demonstrated by the Lagrange multiplier (LM) test, and the non-satisfaction of homoscedasticity of the classical model is discussed. Furthermore, an improved autoregressive moving average (ARMA)-GARCH model is built, in which the conditional variance equation is included and the estimation of model parameters is obtained by maximum likelihood estimation (MLE), A comparison between the improved model and the classical ARMA model is made by taking into account the actual forecasting effect. The results show that the new model has more practical preconditions and better forecasting performance.
作者 陈昊
出处 《电力系统自动化》 EI CSCD 北大核心 2007年第15期51-54,105,共5页 Automation of Electric Power Systems
关键词 负荷预测 ARMA ARCH 条件异方差 GARCH 拉格朗日乘子检验 load forecasting ARMA ARCH conditional heteroscedasticity GARCH LM test
  • 相关文献

参考文献8

  • 1莫维仁,张伯明,孙宏斌,胡子衡.短期负荷综合预测模型的探讨[J].电力系统自动化,2004,28(1):30-34. 被引量:32
  • 2康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 3ENGLE R F.Autoregressive conditional heteroskedasticity with estimate of the variance of U.K.inflation.Econometrica,1982,50(4):987-1008.
  • 4HAMILTON J D.Time series analysis:Vol 1.Beijing:China Social Science Press,1999.
  • 5BOLLERLEV T.Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,1986,31:307-327.
  • 6TASY R S.Analysis of financial time series.New York,NY,USA:Wiley,2002.
  • 7TAYOR S J.Modeling financial time series.New York,NY,USA:Wiley,1986.
  • 8FRANSES P H.Time series models for business and economic forscasting.Cambridge,UK:Cambridge University Press 1998.

二级参考文献68

共引文献525

同被引文献584

引证文献49

二级引证文献423

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部