摘要
Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.
Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.
基金
This work was supported by the Natural Science Foundation of CQ CSTC (No. 2006BB5177)