期刊文献+

长程范德华力导向作用下胶体凝聚的计算机模拟 被引量:8

Computer Simulation of Colloidal Aggregation Induced by Directionalism of Long Range van der Waals Forces
下载PDF
导出
摘要 采用计算机模拟方法研究了长程范德华力在胶体凝聚过程中的作用,发现由于胶粒间的范德华力是长程力,它对胶粒或团簇运动将产生导向作用.与不考虑导向作用的扩散控制团簇凝聚(DLCA)模型比较,这种导向作用不仅加速了胶体的凝聚过程,而且形成了更致密、分形维数更大的结构体.研究还发现,长程范德华力导向作用对胶粒的初始浓度非常敏感,不论是在凝聚物的结构还是凝聚速率方面,只有在胶粒初始浓度较低时,该导向作用效应才明显.其可能的原因是,在胶粒初始浓度较高时,由于胶粒布朗运动的平均自由程很短而且位阻效应大,从而使导向作用效应未能反映出来. Colloidal aggregation within the context of long range van der Waals forces was studied by computer simulations. The motion of colloidal particles or clusters was guided by the long range van der Waals forces. Compared to the diffusion limited cluster aggregation (DLCA), which takes no account of the guiding effect, the directionalism of van der Waals forces not only accelerates the aggregation velocity but also results in morphologies of clusters with higher density and higher fractal dimensions. The directionalism arising from long range van der Waals forces was very sensitive to the initial concentration of particles. Whether on the morphology or on the aggregating velocity, the directionalism was distinct only at low initial concentration of particles. The possible reason was that, at a high particle concentration condition, both a short average random range and the steric effect of particles may screen the guiding effect.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第8期1241-1246,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(40371061) 重庆市教委科学技术研究项目(KJ050205)资助
关键词 长程范德华力 引力驱动团簇凝聚 导向作用 位阻效应 Long range van der Waals forces Attraction driven cluster aggregation Directionalism Steric effect
  • 相关文献

参考文献12

  • 1Puertas,A.M.; Fernández-Barbero,A.; de las Nieves,F.J.J.Chem.Phys.,2001,115:5662
  • 2Meakin,P.; Muthukumar,M.J.Chem.Phys.,1989,91:3212
  • 3González,A.E.; Martínez-López,F.; Moncho-Jordá,A.; Hidalgo-Alvarez,R.J.Physica A,2004,333:257
  • 4Puertas,A.M.; Fernández-Barbero,A.; de las Nieves,F.J.; Rull,L.F.J.Langmuir,2004,20:9861
  • 5Kim,A.Y.; Berg,J.C.Langmuir,2000,16:2101
  • 6Witten,T.A.; Sander,L.M.J.Phys.Rev.Lett.,1981,47:1400
  • 7Vold,M.J.J.Phys.Chem.,1960,64:1616.
  • 8Huang,S.Y.; Zou,X.W.; Tan,Z.J.; Jin,Z.Z.J.Physics Letters A,2001,292:141
  • 9Kolb,M.; Botet,R.; Jullien,R.J.Phys.Rev.Lett.,1983,51:1123
  • 10张济中.分形[M].北京:清华大学出版社,1995..

二级参考文献9

共引文献19

同被引文献130

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部