摘要
本文研究一维椭圆方程边值问题的差分方法,利用Lagrange插值理论与积分因子技巧,发展了一套有效的高精度算法,对非等距节点和等距节点,其精度分别可达O(h^4)和O(h^5).
In this paper, a kind of difference method for soloving one-dimentional elliptic equation with boundary conditions is studied. We use the theory of Lagrange interpolation and integral fator to develop a high precision method. As for node with unequal and equal steps, its precision can reach O(h^4) and O(h^5) repectively. Numerial result shows its superiority.
出处
《应用数学与计算数学学报》
2007年第1期55-65,共11页
Communication on Applied Mathematics and Computation
关键词
积分因子
一维椭圆方程边值问题
高精度差分格式
integral factor, one-dimentional elliptic equation with boundary conditions, high precision