期刊文献+

延时反馈下的瑞利方程及其稳定极限环 被引量:1

Rayleigh Equation under Delayed Feedback and Its Stable Limit Cycle
下载PDF
导出
摘要 通过延时反馈获得了均衡状态下弱非线性瑞利方程极限环的存在条件,并得到位移延时反馈不同于状态反馈,它不仅影响均衡状态下的频率也影响其振幅.最后,利用林濨泰德-庞加莱法求解了Liénard弱非线性型瑞利方程的高阶近似解析表达式. The steady state condition on limit cycle of nonlinear Rayleigh equation is obtained by using the delayed position feedback in the paper. It is shown that the delayed position feedback is different from other feedbacks, it not only changes the amplitude but also influences the frequency of oscillator. When the limit cycle exists, the high step approximate analysis expression of Liénard weak nonlinear Rayleigh equation is solved by L-P method.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2007年第3期39-42,共4页 Journal of Qufu Normal University(Natural Science)
关键词 瑞利方程 延时反馈 极限环 林濨泰德-庞加莱法 rayleigh equation feedback under delayed limit cycle L-P method
  • 相关文献

参考文献9

  • 1Lu H T,He Z T.Chaotic behavior in first-order autonomous continuous time systems with delay[J].IEEE Transaction on Circuits & System-I,1996,43:700-702.
  • 2Heil T,et al.Delay dynamics of semiconductor lasers with short external cavities:Bifurcation scenarios and mechanisms[J].Physical Review E,2003,67(6):11.
  • 3Olagacn,Elmali H,Vijayan S.Introduction to the dual frequency fixed delayed resonator[J].Journal of Sound and Vibration,1996,189:355-367.
  • 4Stepan G,Haller G.Perturbation methods in nonlinear dynamics:application to machining dynamics[J].Journal of Manufacturing Science and Engineering,1997,(119):485-493.
  • 5Wang Genqiang,Yan Jurang.On existence of periodic solutions of the RAYLELGH equation of retarded type[J].Internat J Math & Math Sci,2000,23(1):65-68.
  • 6Sanders J A,Verhulst F.Averaging methods in nonlinear dynamical systems[M].New York:Springer-Verlag,1985.
  • 7Nayfeh A H.Perturbation method[M].New York:John Willey & Sons Co,1973.
  • 8李光芹.一类平面二次方程的极限环存在性[J].曲阜师范大学学报(自然科学版),2002,28(4):53-55. 被引量:4
  • 9洪晓春,施传柱.一类受五次扰动的三次平面Hamilton系统中12个极限环的分布(英文)[J].曲阜师范大学学报(自然科学版),2004,30(2):15-18. 被引量:3

二级参考文献5

  • 1Li Jibin, Huang Qiming. Bifurcations of limit cycles forming compound eyes in the cubic system [J]. Chinese Ann of Math, 1987, 8B(4): 391 ~ 403.
  • 2Cao Hongjun, Liu Zhengrong, Jing Zhujun. Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system withhigher-order perturbed terms [J]. Chaos, Solitons and Fractals, 2000, 11:2293~ 2304.
  • 3Helena EN, James A Yorke. Dynamics: numerical explorations (accompanying computer program dynamics co-authored by Eric J. Kostelich) [M]. New York: Springer; 1998.
  • 4程福德.软弹簧型Duffing方程在摄动下分支出的极限环[J].应用数学和力学,1998,19(2):121-125. 被引量:13
  • 5金银来.二次微分系统(I)类方程的分支问题[J].聊城师院学报(自然科学版),2001,14(1):15-16. 被引量:11

共引文献4

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部