期刊文献+

利用小波变换及人工神经网络识别电能扰动 被引量:28

Application of Wavelet Transform and Artificial Neural Network to Power Disturbance Identification
下载PDF
导出
摘要 电能质量问题成为近年许多高等院校、科研院所的研究重点,电能扰动识别是电能质量研究的一个重要方面。为此,指出了电能扰动识别包括预处理、特征提取和模式识别等3个过程,研究了基于小波变换和人工神经网络的电能扰动模式识别方法。借助于Matlab软件生成120个电能扰动样本并使用小波变换提取特征后,采取反向传播神经网络和概率神经网络识别的正确率分别为87.5%和85%。仿真分析结果发现:使用小波变换提取特征向量并使用反向传播神经网络设计分类器所得到的识别系统的性能比较令人满意。 There are 3 procedures in power disturbance identification such as preprocessing, feature extraction and pattern identification. In this paper ,the basic knowledge of wavelet transform and artificial neural network are introduced and the application of wavelet transform to feature extraction and the application of artificial neural network to pattern identification of power disturbance are studied. Then, simulations of power disturbance identification are carried on via the Matlab software. 120 power disturbance samples are produced, feature extraction is carried on through wavelet transform, pattern identification is carried on through two kinds of neural network which are back propagation neural network (BPNN) and probabilistic Neural Network (PNN). When using the former neural network, the correct rate of identification is 87.5 %, when using the later neural network, the correct rate of identification is 85%. The results of simulation manifest that the ability to identify power disturbance of the identification system is satisfactory, in which feature of the power disturbance is extracted through wavelet transform and pattern identification is carried on through back propagation neural network.
作者 林涛 樊正伟
出处 《高电压技术》 EI CAS CSCD 北大核心 2007年第7期151-153,181,共4页 High Voltage Engineering
基金 国家自然科学基金(50677044)~~
关键词 电能质量 电能扰动识别 特征提取 模式识别 小波变换 人工神经网络 power quality power disturbance identification feature extraction pattern identification wavelet transform artificial neural network
  • 相关文献

参考文献11

  • 1Santoso Surya,Lamoree Jeff,Grady W Mack,et al.A scalable PQ events identification system[J].IEEE Trans on Power Delivery,2000,15(2):738-743.
  • 2欧阳森,王建华,耿英三,宋政湘,陈德桂,张桂青.基于小波和神经网络的电能质量辨识方法[J].电工电能新技术,2003,22(3):32-36. 被引量:14
  • 3Flores Rafael A.State of the art in the classification of power quality events:an overview[C].2002 10th International Conference on Harmonics and Quality of Power:Vol 1.Lake Placid,USA,2002:17-20.
  • 4Santoso Surya,Powers Edward J,Grady W Mack,et al.Power quality disturbance waveform recognition using wavelet-based neural classifier-part 1:theoretical foundation[J].IEEE Trans on Power Delivery,2000,15(1):222-228.
  • 5MathWorks Corporation.The help document of Matlab 7.0.1 wavelet toolbox[M].Natick,USA:MathWorks Corporation,2004.
  • 6梅雪,吴为麟.基于小波和ANN的电能质量分类方法[J].浙江大学学报(工学版),2004,38(10):1383-1386. 被引量:15
  • 7王洪元,史国栋.ANN技术及其应用[M].北京:中国石化出版社,2002.
  • 8刘鹰,赵琳.神经网络BP算法的改进和仿真[J].计算机仿真,1999,16(3):12-14. 被引量:24
  • 9石敏,吴正国,徐袭.基于概率神经网络和双小波的电能质量扰动自动识别[J].电力自动化设备,2006,26(3):5-8. 被引量:16
  • 10MathWorks Corporation.The help document of Matlab 7.0.1 neural network toolbox[M].Natick,USA:MathWorks Corporation,2004.

二级参考文献37

  • 1王成山,王继东.基于小波包分解的电能质量扰动分类方法[J].电网技术,2004,28(15):78-82. 被引量:68
  • 2石敏,吴正国,尹为民.基于双小波的短时电压波动信号检测[J].电网技术,2005,29(6):17-21. 被引量:20
  • 3郑君里.人工神经网络[M].清华大学出版社,1990..
  • 4焦立成.神经网络应用与实现[M].西安:西安电子科技大学出版社,1992..
  • 5林海雪.论电能质量标准[J].中国电力,1997,30(3):9-10. 被引量:60
  • 6Stones J, Collinson A. Power quality [J]. Power Engineering Journal, 2001, 15(2) : 58-64.
  • 7Dash P K, Mishra S, Salama M, et al.. Classification of power system disturbances using a fuzzy expert system and a Fourier linear combiner [J]. IEEE Trans. on Power Delivery, 2000, 15(2): 472-477.
  • 8Santoso S, Powers E J, Grady W M, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier, partl: Theoretical foundation, Part 2: Application [J]. IEEE Trans. on Power Delivery, 2000, 15(1 ) :222-235.
  • 9Borras D, Castilla M, Moreno N, et al. Wavelet and neural structure: A new tool for diagnostic of power system disturbances [J]. IEEE Trans. on Industry Applications, 2001,37(1): 184-190.
  • 10Santoso S, Grady W M, Edward J, et al. Characterization of distribution power quality events with Fourier and wavelet transforms [J]. IEEE Trans. on Power Delivery, 2000, 15(1) : 247-254.

共引文献74

同被引文献248

引证文献28

二级引证文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部