期刊文献+

基于流形正则化的支持向量回归及应用 被引量:1

Support vector regression based on manifold regularization and its application
下载PDF
导出
摘要 利用流形正则化的思想,围绕半监督学习,提出了一种针对回归问题的新算法。该算法基于流形上的正则化项和传统的正则化项相结合的方法,利用支持向量机回归已有的结果,解决半监督学习的回归问题,提高了泛化能力。通过数值试验,验证了该算法具有较好的泛化能力,对噪音具有较强的鲁棒性,与支持向量回归相比,具有更高的学习精度。 Based on the theory of manifold regularization, a new algorithm about semi-supervised learning for the problem of regression was proposed. The algorithm was deduced by the connection between the regularization term on the manifold and the classical regularization term. Using the result of support vector regression, the algorithm not only solves the problem about semi- supervised learning but also improves generalization capability. Numerical experimental results show that the algorithm enhances generalization capability and is strongly robust to noise, and has higher learning precision compared to support vector regression.
出处 《计算机应用》 CSCD 北大核心 2007年第8期1955-1958,共4页 journal of Computer Applications
关键词 半监督学习 流形正则化 支持向量回归 semi-suporvised learning manifold regularlzation support vector regression
  • 相关文献

参考文献7

  • 1BENNETT K,DEMIRIZ A.Semi-supervised support vector machines[M]// KEARNS M S,SOLLA S A,COHN D A.Advances in Neural Information Processing Systems 11.Cambridge,MA:MIT Press,1999:368-374.
  • 2JOACHIMS T.Transductive inference for text classification using support vector machines[C]// Proceeding of the 16th International Conference on Machine Learning.San Francisco:Morgan Kaufmann,1999:200-209.
  • 3陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 4BELKIN M,NIYOGI P,SINDHWANI V.Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J].Journal of Machine Learning Research,2006,7:2399-2434.
  • 5罗公亮.核函数方法(上)[J].冶金自动化,2002,26(3):1-4. 被引量:8
  • 6罗公亮.核函数方法(下)[J].冶金自动化,2002,26(4):1-3. 被引量:6
  • 7Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

二级参考文献18

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献269

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部