期刊文献+

一种基于约束关系的电子病历图像分割核聚类算法 被引量:2

Kernel clustering algorithm with the constraint about the image segmentation in the electronic patient record
下载PDF
导出
摘要 针对电子病历中图像分割问题,提出了基于约束关系的改进核聚类算法,该算法通过引入约束关系在图像分割前进行修正,从而提高图像分割效果。该核聚类算法在MR I中电子病历图像分割实验的结果表明,施加约束关系的核聚类算法能有效地解决电子病历图像中含噪声以及灰度不均匀等问题,具有一定的鲁棒性和较好的图像分割效果。 An improved kernel clustering algorithm based on constraints was proposed, which was used to resolve the problem of the image segmentation in the electronic patient record. The proposed algorithm was designed to retouch the images before they were segmented to improve the image segmentation. The experiment adopted the kernel clustering algorithm in MRI image segmentations, and the results show that the proposed algorithm, compared with classical algorithm, is more effective in solving the inherent problems in the electronic patient record images including noises and intensity inhomogeneities, etc. And accordingly the proposed algorithms are robust and can achieve better image segmentation results.
作者 丁卫平 邓伟
出处 《计算机应用》 CSCD 北大核心 2007年第8期2066-2068,2071,共4页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(02KJB520004) 南通大学自然科学基金资助项目(05Z061)
关键词 核聚类 电子病历 图像分割 鲁棒性 kernel clustering electronic patient record image segmentation robustness
  • 相关文献

参考文献19

  • 1ANDRAS P.Kernel-kohonen networks[J].International Journal of Neural Systems,2002,12(2):117-135.
  • 2AHMED M N,YAMANY S M,MOHAMED N,et al.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
  • 3BAUDAT G,ANOUAR F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.
  • 4JOACHIMS T.Text categorization with support vector machines:learning with many relevant features[C]// Proceedings of 10th European Conference on Machine Learning,LNCS 1398.Berlin:Springer-Verlag,1998:137-142.
  • 5JENG Y J,YEH C C,Chiueh T D.Exponential bidirectional associative memory[J].Electronics Letters,1990,26(1):717-718.
  • 6MIKA S,RATSCH G,WESTON J,et al.Fisher discriminant analysis with kernels[C]// IEEE Neural Networks for Signal Processing Workshop.New York:IEEE Press,1999:41-48.
  • 7BOSERR B,GUYON I,VAPNIK V N.A training algorithm for optimal margin classifiers[C]// Proceedings of Fifth Annual Workshop on Computational Learning Theory.New York:ACM Press,1992:144-152.
  • 8KIM K I,JUNG K,KIM H J.Face recognition using kernel principal component analysis[J].IEEE Signal Processing Letters,2002,9(2):40-42.
  • 9章毓晋.图像分割[M].北京:科学出版社,2001..
  • 10MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]// Proceedings of Fifth Berkeley Symposium on Mathematics Statistic Problem.Berkeley:University of California Press,1967,1:281-297.

二级参考文献18

  • 1Malladi, R., Sethian, J.A., Vemuri, B. Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2):158~174.
  • 2Bertalmio, M., Sapiro, G., Randall, G. Region tracking on level-set methods. IEEE Transactions on Medical Imaging, 1999,18(5): 448~451.
  • 3Masouri, A-R., Sirivong, B., Konrad, J. Multiple motion segmentation with level sets. In: Proceedings of the SPIE, Vol 3974. 2000. 584~595.
  • 4Paragios, N., Deriche, R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(3):266~280.
  • 5Samon, C., Blanc-Feraud, L., Aubert, G., et al. Level set model for image classification. International Journal of Computer Vision, 2000,40(3):187~197.
  • 6Vincent, L., Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583~589.
  • 7Sijbers, J., Verhoye, M., Scheunders, P., et al. Watershed-Based segmentation of 3D mr data for volume quantization. Magnetic Resonance Imaging, 1997,15(6):679~688.
  • 8Sethian, J.A. Fast marching methods. SIAM Review, 1999,41(2):199-235.
  • 9Sethian, J.A. A fast marching level set method for monotonically advancing fronts. In: Proceedings of the National Academy of Sciences, Vol 93. 1996. 1591~1595.
  • 10Malladi, R., Sethian, J.A. An O(Nlog(N)) algorithm for shape modeling. In: Proceedings of the National Academy of Sciences, Vol 93. 1996. 9389~9392.

共引文献624

同被引文献80

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部