期刊文献+

一种适用于小样本问题的基于边界的特征提取算法 被引量:6

A Margin Based Feature Extraction Algorithm for the Small Sample Size Problem
下载PDF
导出
摘要 特征提取技术是模式识别领域进行数据降维和强化判别信息的有效方法.线性判别分析是监督特征提取方法的典型代表,获得广泛应用,但受到小样本问题的制约.对此提出一种适用于小样本问题的基于边界的特征提取算法.算法利用高维数据小样本情况下线性可分概率增加以及其低维投影趋于正态分布的特点,定义了新的类别边界,不但考虑了由线性判别分析提出的类内、类间离散度,也兼顾各类别的方差差异性.通过极大化该边界获得最优投影向量,同时避免因类内离散度矩阵奇异导致的小样本问题.进一步将算法推广到多类问题.高光谱数据特征提取与分类实验表明,算法在小样本情况下对于两类和多类问题均具有良好的推广性能,优于多种线性判别分析的改进算法,并且在样本较多时也取得了满意结果. Feature extraction techniques are widely employed to reduce the dimensionality of data and to enhance the discriminatory information for the classification and recognition tasks. Linear Discriminant Analysis (LDA) is the most popular supervised method for feature extraction, but it often suffers the small sample size problem due to the singularity of the within-class scatter which arises if the number of samples is smaller than the dimensionality of samples. A margin based feature extraction algorithm is proposed for the problem. In view of the facts that for the high-dimensional data, the probability of linear separability may grow in case of small samples and the low-dimensional projection is approximately normal, the proposed algorithm introduces a new definition of the margin, which involves not only the between-class scatter and within-class scatter proposed by LDA criterion, but also the differences of the class variances. Through maximalizing the margin, we can obtain the optimal projection vector, and avoid the small sample size problem. Through theoretical analysis, the algorithm is further extended to the multi-class case. The experiment results show that the algorithm outperforms several improved versions of LDA in the case of small samples. At the same time, a satisfying performance is also achieved for larger samples.
出处 《计算机学报》 EI CSCD 北大核心 2007年第7期1173-1178,共6页 Chinese Journal of Computers
基金 本课题得到国家自然科学基金(60572097)资助
关键词 特征提取 线性判别分析 小样本问题 模式分类 最大化类别边界 feature extraction linear discriminant analysis small sample size problem pattern classification maximum margin
  • 相关文献

参考文献10

  • 1Hughes G F.On the mean accuracy of statistical pattern recognizers.IEEE Transactions on Information Theory,1968,14(1):55-63
  • 2Belhumeur P N,Hespanha J,Kriegman D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720
  • 3Chen L-F,Liao H-Y M,Ko M-T,Lin J-C,Yu G-J.A new LDA-based face recognition system which can solve the small sample size problem.Pattern Recognition,2000,33 (10):1713-1726
  • 4Huang R,Liu Q,Lu H,Ma S.Solving the small sample size problem of LDA//Proceedings of the 16th International Conference on Pattern Recognition.Quebec,Canada,2002:29-32
  • 5Yu H,Yang J.A direct LDA algorithm for high-dimensional data-with application to face recognition.Pattern Recognition,2001,34(10):2067-2070
  • 6Li H,Jiang T,Zhang K.Efficient and robust feature extraction by maximum margin criterion//Proceedings of the Advances in Neural Information Processing Systems.Vancouver,Canada,2004:97-104
  • 7Jimenez L O,Landgrebe D A.High dimensional feature reduction via projection pursuit[Ph.D.dissertation].Purdue University,Indiana USA,1995
  • 8Malina W.On an extended fisher criterion for feature selection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1981,3(5):611-614
  • 9Lee C,Landgrebe D A.Feature extraction based on decision boundaries.IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(4):388-400
  • 10夏建涛,何明一.基于Bhattacharyya距离准则的核空间特征提取算法[J].计算机学报,2004,27(5):683-689. 被引量:4

二级参考文献11

  • 1Hughes G.F.. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 1968, 14(1): 55~63
  • 2Lee C., Landgrebe D.A.. Feature extraction based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(4): 388~400
  • 3Schlkopf B., Smola A.J., Müller K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299~1319
  • 4Mika S, Rtsch G., Müller K.R.. A mathematical programming approach to the kernel fisher algorithm. In: Leen T.K., Dietterich T.G., Tresp V. eds. Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2001, 13: 591~597
  • 5Bian Zhao -Qi, Zhang Xue -Gong. Pattern Recognition. Beijing: Tsinghua University Press, 2000(in Chinese)(边肇祺,张学工.模式识别. 北京:清华大学出版社,2000)
  • 6Diaconis P., Freeddman D.. Asymptotics of graphical projection pursuit. Annals of Statistics, 1984, 12(3): 793~815
  • 7Hall P., Li K.. On almost linearity of low dimensional projections from high dimensional data. Annals of Statistics, 1993, 21(2): 867~889
  • 8Vapnik V.N.. The Nature of Statistic Learning Theory. New York: Springer-Verlag, 1995
  • 9Chen Bao-Lin. Optimization Theory and Algorithms. Beijing: Tsinghua University Press, 1996(in Chinese)(陈宝林.最优化理论与算法.北京:清华大学出版社,1996)
  • 10Ruiz A., López-de-Teruel P.E.. Nonlinear kernel-based statistical pattern analysis. IEEE Transactions on Neural Networks, 2001, 12(1): 16~32

共引文献3

同被引文献75

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部