期刊文献+

基于向量空间模型的视频语义相关内容挖掘 被引量:3

Semantic Content Mining Approach in Video Based on Vector Space Model
下载PDF
导出
摘要 对海量视频数据库中所蕴涵的语义相关内容进行挖掘分析,是视频摘要生成方法面临的难题。该文提出了一种基于向量空间模型的视频语义相关内容挖掘方法:对新闻视频进行预处理,将视频转化为向量形式的数据集,采用主题关键帧提取算法对视频聚类内容进行挖掘,保留蕴涵场景独特信息的关键帧,去除视频中冗余的内容,这些主题关键帧按原有的时间顺序排列生成视频的摘要。实验结果表明,使用该视频语义相关内容挖掘的算法生成的新闻视频具有良好的压缩率和内容涵盖率。 Video summarization is receiving increasing attention to mining semantic contents in huge video databases. This paper proposes a novel emantic content mining approach that mines subject keyframes by an algorithm based on vector space model. After pre-processing, video is transformed into a relational dataset of keyframe classes. Using subject keyframe detection algorithm, it keeps the pertinent keyframes that distinguish one scene from others and remove the visual-content redundancy from video content. The corresponding summary is obtained by assembling them by their original temporal order. Experiments are conducted to evaluate the effectiveness of the proposed approach with summary compression ratio and content coverage. The results demonstrate that meaningful news video summaries is generated.
作者 谢晓能 吴飞
出处 《计算机工程》 CAS CSCD 北大核心 2007年第9期95-96,共2页 Computer Engineering
基金 国家自然科学基金资助项目(60272031) 浙江省自然科学基金资助项目(M603202)
关键词 向量空间模型 主题关键帧 视频摘要 Vector space model Subject keyframe Video summarization
  • 相关文献

参考文献8

  • 1Hu J,Zhong J,Bagga A.Combined-media Video Tracking for Summarization[C]//Proceedings of the 9th ACM International Conference on Multimedia.2001:502-505.
  • 2Yahiaoui I,Merialdo B,Huet B.Comparison of Multiepisode Video Summarization Algorithms[J].EURASIP Journal on Applied Processing,2003,(1):48-55.
  • 3Salton G,Wong A,Yang C S.On the Specification of Term Values in Automatic Indexing[J].Journal of Documentation,1973,29(4):351-372.
  • 4Salton G,McGill M.Introduction to Modern Information Retrieval[M].New York:McGraw-Hill,1983
  • 5Navarro G,Raffinot M.Fast and Flexible String Matching by Combining Bit-parallelism and Suffix Automata[J].ACM Journal of Experimental Algorithmics,2000,5(4):1-36.
  • 6Sebe N,Lew M S,Smeulders A W M.Video Retrieval and Summarization[J].Computer Vision and Image Understanding,2003,92(2/3):141-146.
  • 7Hsu W,Chang S F.A Statistical Framework for Fusing Mid-level Perceptual Features in News Story Segmentation[C]//Proc.of IEEE International Conference on Multimedia and Expo..2003:413-416.
  • 8叶朝阳,吴飞,庄越挺,陈家实.鲁棒的镜头边缘检测融合算法[J].计算机辅助设计与图形学学报,2003,15(11):1386-1392. 被引量:8

二级参考文献13

  • 1Huang Jing, Kumar S Ravi, Mitra Mandar, et al. Spatial color indexing and applications[A]. In: Proceedings of IEEE Computer Vision(ICCV), Bombay, India, 1997. 602~607
  • 2Ying X, Victor O, Xu Dong. Minimum spanning trees for gene expression data clustering[J]. Genome Informatics, 2000, 11(2): 24~33
  • 3Aho A V, Hopcroft J E, Ullman J D. The Design and Analysis of Computer Algorithms[M]. Reading, MA: Addison-Wesley, 1974
  • 4MGI VideoWave 5 User Guide[M]. Washington: MGI Software Corp, 2001
  • 5Aigrain P, Joly P. The automatic real-time analysis of film editing and transition effects and its applications[J]. Computer and Graphics, 1994, 18(1): 93~103
  • 6Boreczky J S, Rowe L A. Comparison of video shot boundary detection techniques[A]. In: Proceedings of Storage and Retrieval for Still Image and Video Databases IV, SPIE 2664, San Diego, California, 1996. 170~179
  • 7Yeo B-L, Liu B. Rapid scene analysis on compressed video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(6): 533~544
  • 8Zabih R, Miller J, Mai K. A feature-based algorithm for detecting and classifying scene breaks[A]. In: Proceedings of ACM Multimedia 95, San Francisco, CA, 1995. 189~200
  • 9Zhang H J, Kankanhalli A, Smoliar S. Automatic partitioning of full-motion video[J]. Multimedia Systems, 1993, 1(1): 10~28
  • 10Boreczky John S, Wilcox Lynn D. A hidden Markov model framework for video segmentation using audio and image features[A]. In: Proceedings of ICASSP'98, Seattle, 1998. 3741~3744

共引文献7

同被引文献20

  • 1戢渼钧.面向个性化服务的用户建模相关问题研究[J].情报杂志,2006,25(3):77-79. 被引量:11
  • 2应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 3卢汉清.图像视频信号的浏览与检索[J].中国图象图形学报,2000,(1).
  • 4Hu J, Zhong J, Bagga A. Combined-media video tracking for summarization[ A ]. Proceedings of the ninth ACM international conference on Multimedia. Ottawa ,2001:502 - 505.
  • 5Ciocca G,Schettini R. Supervised and unsupervised classification post- processing for visual video summaries [ J ]. IEEE Transactions on Consumer Electronics,2006,52 (2) :630 - 638.
  • 6Zhuang Y, Rui Y, Huang T S, et al. Adaptive key frame extraction using unsupervised clustering [ A ]. Proc. of IEEE Int. Conf. on Image Processing ( ICIP). Chicago, 1998:866 - 870.
  • 7Frey B J, Dueck D. Clustering by passing messages between data points [ J]. Science ,2007,315 (5814) :972 - 976.
  • 8Dueck D, Frey B J. Non-metric affinity propagation for unsupervised image categorization[ A ]. Proceedings of the IEEE International Conference on Computer Vision (ICCV) ,Brazil,2007 : 1 -8.
  • 9Swain M J, Ballard D H. Color indexing [ J ]. International Journal of Computer Vision, 1991,7 ( 1 ) : 11 - 32.
  • 10Zhu X, Wu X, Fan J, et al. Exploring video content structure for hierarchial summarization [ J ]. Multimedia System,2004,10 (2) :98 - 115.

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部