1Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resource. New York: John Wiley & Sons, Inc. 1990. 245-343.
2Zhang X A, Chen L S, Neumann A. The stage-structured predator-prey model and optimal harvesting policy.Mathematical biosciences. 2000, 168:201-210.
3Song X Y, Chen L S. Optimal harvesting and stability for a two-species competitive system with stage structure.Mathematical biosciences, 2001, 179: 173- 186.
4Fan M, Wang K. Optimal harvesting policy for population with periodic coefficients. mathematical biosciences,1998, 152:165-177.
5Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. New York: World Scientific, 1989. 57-149.
6Blaquiere A. Differential Games with Piece-wise Continuous Trajectories. Lecture Notes in Control and Information(3). Berlin: Springer Verlag, 1977. 34-70.
7Cohen Y. Applications of Optimal Control to Optimal Foraging Problem. Lecture Notes in Biomathematics(73).Berlin: Springer Verlag, 1987. 39-56.
8Li Z G, Wen C Y, Soh Y C. Analysis and design of impulsive control systems. IEEE Transactions Automatic Control, 2001, 46: 894- 897.
9M Thome. Lecture Notes in Control and Imformation Science(231). London: Springer Verlag, 1998. 1-153.
10YangX ChenJF.Permanence and existence of positive perodic solution for diffusive Lotka—Volterra model[J].生物数学学报,1997,12(1):1-7.
3Song X Y, Chen L S. Optimal harvesting policy for a two species competitive system with stage structure[J]. Mathematical Biosciences, 2001,179:173-186.
4Clark C W. Mathematical Biocenology the Optimal Management of Renew Able Resource[M]. New York: John Wiley & Sons ,1990. 245-296.
5Zhang X A, Chen L S, Neumann A. The stage structured predator prey model and optimal harvesting policy[J]. Mathematical Biosciences ,2000,168: 201-210.
6Chen L S, Chen J. Nonlinear Biodynamical System[M]. Beijing: Science Press, 1993. 215-226.
7CHEN L S. CHEN J. Nonlinear biodynamical system[ M], Beijing: Science Press, 1993.215 - 226.
8ZHANG X A, CHEN L S, NEUMANN A. The stage structured predator prey model and optimal harvesting policy[J ]. Mathematical Biosciences, 2000,168: 210 - 210.
9CLARK C W. Mathematical biocenology the optimal management of renew able resource[M]. New York:John Willey & Sons, 1990 , 245 - 296.