期刊文献+

复合泡沫塑料力学行为模拟的ANN方法 被引量:1

Method for simulating mechanical behavior of syntactic foam plastics by artificial neural networks
下载PDF
导出
摘要 对人工神经网络(ANN)方法在复合泡沫塑料力学行为模拟中的应用进行了研究.首先,选取影响材料力学行为的因素和所需模拟、预测的力学性能作为输入、输出量;然后,利用反向传播算法建立了四层神经网络模型,对复合泡沫塑料的力学性能和本构关系进行了模拟和预测.数值结果表明,训练后的神经网络模型能较好地模拟、预测材料的模量、屈服强度和不同应变率及不同温度下的压缩应力-应变曲线.此外,3种不同改进训练方法的比较说明,Bayesian规则化法的泛化能力最好,LM法收敛最快,而自适应梯度下降动量法则需要较长的迭代时间才能达到相同的精度. Application of artificial neural networks (ANN) method on the mechanical behavior simulation of syntactic foam plastics was discussed. Firstly, factors influencing on the mechanical behavior and mechanical properties simulated and predicted were separately taken as input and output quantities. Secondly, Fourlayer neural networks model was established to simulate and predict the mechanical properties and constitutive relationship of syntactic foam plastics by means of back-propagation algorithm. The numerical results show that the trained ANN model can preferably simulate and predict the mechanical behavior of material, such as Young's modulus, yield strength and stress-strain curves under different strain rates or temperatures. Additionally, by comparison among three different modified training methods, it is found that Bayesian regularization back-propagation has the best capacity of improving network generalization, Levenberg-Marquardt(LM) backpropagation would converge fastest, and gradient descent momentum & adaptive learning rate back-propagation need long-end iterative process before the same precision in calculation is achieved.
作者 邹波 卢子兴
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第7期860-864,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(10572013) 国家自然科学联合基金资助项目(NASF10276004)
关键词 人工神经网络 复合泡沫塑料 力学性能 artificial neural networks syntactic foam plastics mechanical properties
  • 相关文献

参考文献5

二级参考文献32

  • 1董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 2Ghaboussi J, Garrett Jr JH and Wu X. Material Modeling with Neural Networks. Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, U. K., 1990:70-717.
  • 3Gbaboussi J, Gerrett Jr JH and Wu X. Knowledge- based Modeling of Material Behavior with Neural Networks. Journal of Engineering Mechanics Division, ASCE, 117 ( 1 ),1991:132-153.
  • 4Wu, X. and Ghaboussi, J. Modeling Unloading mechanism and cyclic behavior of concrete with adaptive neural networks. Proceedings, Second Asian- Pacific Conference on Computational Mechanics, Sydney, Australia, 1993.
  • 5Ghaboussi, J., Lade, P.V. and Sidarta, D.E. Neural Networks Based Modeling in Geomechanics, Proceedings of 8^th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, WV. 1994.
  • 6Ghaboussi J, Pecknold DA and Haj - Ali JA. Autoprogresaive Training of Neural Networks Constitutive Models, International Journal for Nmnerical Methods in Engineering, 42 (1),1998: 105-127 .
  • 7Ghaboussi J and Sidarta DE. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling, Computers and Geoteehnies, 22 (1), 1998:29-52.
  • 8Penumadu D and Rongda Zhao. Triaxial compression Behavior of Sand and Gravel Using Artificial Neural Networks (ANN),Computers and Geotechnics, 24, 1999:207- 230.
  • 9Ellis GW, Yao C, Zhao R and Penumadu D. Stress- strain Modeling of Sands Using Artificial Neural Networks. Journal.of Geotechnical Engineering, ASCE, 121 (5), 1995: 429-435.
  • 10Pernot S. and Lamarque C. - H. Application of Neural Networks to the Modeling of Some Constitutive laws, Neural Networks, 12, 1999:371- 392.

共引文献181

同被引文献10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部