期刊文献+

基于混沌粒子群的支持向量机参数优化 被引量:2

Parameter Optimization of Support Vector Machine Based on Chaos-Particle Swarm Optimization
下载PDF
导出
摘要 支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。 The support vector machine parameter decides its study performance and exudes the ability. As the parameter choice is infinite, the parameter chioce needs enormous time, and is very difficult to approach superiorly. So, a new kind parameter optimization of support Vector machine is proposed Based on chaos-particle swarm optimization, chaos-particle swarm optimization is a overall situation reconnaissance method, does not need to consider the model complex and the variable dimension. Simulation results show that the classifier has stronger ability to distinguish garbage messages.
出处 《科学技术与工程》 2007年第18期4597-4600,共4页 Science Technology and Engineering
关键词 支持向量机 混沌粒子群 参数选择 SVM CPSO parameter optimization
  • 相关文献

参考文献5

  • 1[1]Vapnik V N.Estimation of Dependencies Based on Empirical Data.Berlin:Springer-Verlag,1982
  • 2[2]Graepel T.Classification on Proximity Data with LP-machine.Ninth International Conference on Artificial Neural Networks IEEE.London,1999,304-309
  • 3[3]Cristianini N,Shawe T J,Kandola J,et al.On Kernel Target Alignment.Neural Information Processing Systems.Cambridge,MA:MIT Press,2002,367-373
  • 4[4]Eberhart R C,Kennedy J.A New Optimizer Using Particles Swam Theory.International Symposium on Micro-Machine and Human Science.Nagoya,1995,39-43
  • 5[5]Murthy S,ha D A.UCI repository of machine learning data tables[DB/OL]Available:http://www.ics.uci.edu/~ mlearn/

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部