期刊文献+

半参数广义线性混合效应模型的影响分析 被引量:5

Influence Analysis of Generalized Partially Linear Mixed Models
原文传递
导出
摘要 本文把随机效应当作是缺失数据并利用P-样条拟合非参数部分,从而得到了半参数广义线性混合效应模型(GPLMM)的MCNR估计算法;同时利用Q-函数,我们得到了模型的参数部分的广义Cook距离以及非参数部分的广义DFIT,此外,本文还研究了四种不同扰动情形的PLMM的局部影响分析,得到了相应的影响矩阵,最后,我们通过—个实际例子验证了所提出的诊断统计量的有效性。 This paper proposes several case-deletion as well as local influence measures for assessing the influence of an observation for generalized partially linear mixed models(GPLMM). The essential idea is to treat the latent random effects in the model as missing data and extend the MCNR algorithm by adding penalized spline to estimate the nonparamters. On the basis of the Q-function which is associated with the conditional expectation of the complete-data log-likelihood, we generate generalized Cook Distance and generalized DFIT for the parametric and nonparametric part respectively. Four different perturbation schemes are discussed. One real illustrative examples are presented to prove the methodology.
作者 张浩 朱仲义
出处 《应用数学学报》 CSCD 北大核心 2007年第4期743-756,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10671038号)资助项目.
关键词 半参数回归 广义线性混合模型 局部影响 COOK距离 P-样条 semiparametric regression generalized linear mixed models local influence Cook distance penalized spline
  • 相关文献

参考文献1

二级参考文献15

  • 1Breslow, N.E. and Clayton, D.G., Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88(1993), 9-25.
  • 2Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L., Analysis of Longitudinal Data, Cambridge University Press, New York, 2002.
  • 3Davidian, M. and Giltinan, D.M., Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London, 1995.
  • 4Fung, W.K., Zhu, Z.Y., Wei, B.C. and He X.M., Influence diagnostics and outlier tests for semipara- metric mixed models, J. R. Star. Soc. B, 64(3)(2002), 565-579.
  • 5He, X.M., Zhu, Z.Y. and Fung, W.K., Estimation in semiparametrics model for longitudinal data with unspecificed dependence structure, Biometrika, 89(2002), 579-590.
  • 6He, X., Fung, W.K. and Zhu, Z.Y., Robust estimation in generalized partial linear models for clustered data, J.A.S.A., 100(2005), 1176-1184.
  • 7Lin, X.H. and Carroll, R.J., Semiparametric regression for clustered data using generalized estimation equations, J.A.S.A. 96(2001), 1045-1056.
  • 8Lin, X.H. and Carroll, R.J., Semiparametric regression for clustered data, Biometrika, 99(4)(2001), 1179-1185.
  • 9Lin, X.H. and Zhang, D.W., Inference in generalized additive mixed models by using smoothing splines, J. R. Statist. Soc. B, 61(2).(1999), 381-400.
  • 10McCulloch, C.E., Maximum likelihood algorithm for generalized linear mixed models, J.A.S.A., 92(1997), 162-170.

共引文献2

同被引文献26

  • 1GUI HengjianDepartment of Mathematics, Beijing Normal University, Beijing 100875, China.On asymptotics of t-type regression estimation in multiple linear model[J].Science China Mathematics,2004,47(4):628-639. 被引量:7
  • 2卢一强,茆诗松.非参数Bayes样条回归[J].华东师范大学学报(自然科学版),2004(4):33-39. 被引量:4
  • 3崔恒建.线性模型和线性EV模型中的T-型回归估计和EM算法(英文)[J].应用概率统计,2006,22(3):321-328. 被引量:10
  • 4Crainicenu C M,Ruppert D, Wand M P. Bayesian Analysis for Penalized Spline Regression Using WinBUGS [J]. Journal of Statistical Software,2005,14(14).
  • 5Ruppert D, Wand M P, Carroll R J. Semiparametrie Regression [M].English:Cambridge University Press,2003.
  • 6Lang S, Brezger A. Bayesian P-splines [J]. Journal of Computational and Graphical Statistics,2004,(13).
  • 7Lin X H, Zhang D W. Inference in Generalized Additive Mixed Models by using Smoothing Splines [J].Journal R.Statistic.Soc, 1999,61 (2).
  • 8Zhao Y, Staudenmayer J,Coull, B A, Wand M P. General Design Bayesian Generalized Linear Mixed Models [J].Statistical Science, 2006, (2).
  • 9李爱萍,解锋昌,刘应安.Beta回归模型的影响诊断[J].高校应用数学学报(A辑),2007,22(3):293-300. 被引量:2
  • 10Zhu H, Lee S. Local Influence for Incomplete-data Models. J. Journal of the Royal Statistical Society, Series B, 2001, 63:111-126.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部