期刊文献+

基于拓扑约束释放与重构的变结构设计技术研究 被引量:2

Research on Design Process of Deform Structure Based on the Release and Re-structure of Topology Restriction
下载PDF
导出
摘要 针对拓扑约束型模型难以进行变结构处理的问题,提出了一种约束释放、形状变形、拓扑重构的变结构设计方法。对三维实体进行面片分解以形成面片族,结合增减关键点的策略,以使每一曲面点集的局部拓扑关系确定化,只记录实体点集的数据而释放其拓扑连接关系。通过对约束释放的拓扑自由面片进行细分操作,并运用工具对其进行编辑,实现了变结构处理。对编辑完成的面片进行优化和拓扑重构操作,完成变结构的过程。最后给出了应用实例。 The paper presented a novel technique for sculpting and metamorphosing Solid Models using point-based geometry without carrying about the alignment of point set on a certain surface. The technique decomposed the Solid into a set of surfaces, synchronously using the strategy that increasing or decreasing the key points to make each surface having the right topology structure, thus one needed only to record entity points data but release its topology relation. The paper permited an easy way that using tools to change Solid Model's topology properly thanks to the free-topology structure of point set. We used this technique for Solid Model design. Several examples were demonstrated using the proposed method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第16期1943-1949,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50275133) 高等学校博士学科点专项科研基金资助项目(20040335060) 浙江省青年科技人才培养基金资助项目(R603240)
关键词 三维散乱点集 三角网格 实体造型 变结构 3D arbitrary point-set triangular mesh solid modeling deform structure
  • 相关文献

参考文献20

  • 1Rogers D F,Fog N G.Constrained B-spline Curve and Surface Fitting[J].Computer-aided Design,1989,21(10):641-548.
  • 2Weiss V,Andor L.Advanced Surface Fitting Techniques[J].Computer Aided Geometric Design,2002,19(1):19-42.
  • 3蔺宏伟,王国瑾,董辰世.用迭代非均匀B-spline曲线(曲面)拟合给定点集[J].中国科学(E辑),2003,33(10):912-923. 被引量:20
  • 4Rusinkiewicz S,Levoy M.Qsplat:a Multiresolution Point Rendering System of Large Meshes[C]//Computer Graphics Proceedings,Annual Conference Series.New Orleans,Louisiana:ACM SIGGRAPH,2000:343-352.
  • 5Pfister H,Zwicker M,Baar J,et al.Surface Elements as Rendering Primitives[C]//Computer Graphics Proceedings,Annual Conference Series.New Orleans,Louisiana:ACM SIGGRAPH,2000:335-342.
  • 6Ohtake Y,Belyaev A,Alexa M,et al.Multi-level Partition of Unity Implicits[C]//Computer Graphics Proceedings,Annual Conference Series.San Diego,California:ACM SIGGRAPH,2003:463-470.
  • 7Adams B,Dutre P.Interactive Boolean Operations on Surfel-bounded Solids[C]//Computer Graphics Proceedings,Annual Conference Series.San Diego,California:ACM SIGGRAPH,2003:651-656.
  • 8Zhang Dianhua,Li Haibo.Study on Topological Deformation of Point-sampled Surfaces[C]//The Fourth International Conference on Machine Learning and Cybernetics.Guangzhou,2005:18-21.
  • 9Hoppe H,deRose T,Duchamp T,et al.Surface Reconstruction from Unorganized Points[C]//Computer Graphics Proceedings,Annual Conference Series.Chicago,Illinois:ACM SIGGRAPH,1992:71-78.
  • 10David E,Ross T.A Level-set Approach for the Metamorphosis of Solid Models[J].IEEE Transactions on Visualization and Computer Graphics,2001,7(2):173-192.

二级参考文献73

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2齐东旭.曲线拟合的数值磨光方法[J].数学学报,1975,18(3):173-184.
  • 3Praun E, SweldensW, Schroder P. Consistent mesh parameterizations[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 179~184
  • 4Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Computers & Graphics, 2002, 26(5): 677~686
  • 5Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. 3rd ed. San Diego: Academic Press, 1993
  • 6Pinkall U, Polthier K. Computing discrete minimalsurfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15~36
  • 7Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209~218
  • 8Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 9Levy B, Mallet J-L. Non-distorted texture mapping for sheared triangulated meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998. 343~352
  • 10Greiner G, Hormann K. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines[M]. In: Meheute A L, Rabut C, Schumaker L L, eds. Surface Fitting and Multiresolution Methods. Nashville, Tennessee: Vanderbilt University Press, 1997. 163~172

共引文献52

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部