期刊文献+

周期Gompertz生态系统中的最优脉冲控制收获策略 被引量:13

OPTIMAL IMPULSIVE CONTROL POLICY IN PERIODIC GOMPERTZ ECOSYSTEM
原文传递
导出
摘要 以周期Gompertz系统为基础,讨论了周期变化的单种群生物资源的收获优化问题及种群的动力学性质.在单位收获努力量假设下,以最大可持续收获量为管理目标,确定了线性收获下的最优收获策略,获得了最优收获努力量、最大可持续收获及相应的最优种群水平的显示表达式,为自然资源的开发和利用提供了理论依据. This paper studies the impulsive exploitation of single species modelled by periodic Gompertz ecosystem. Choosing the maximum periodic biomass yield as the management objective, we investigate the optimal harvesting policies for periodic Gompertz ecosystem with impulsive harvest. When the optimal harvesting effort maximiges the periodic biomass yield, the corresponding optimal population level, and the maximum periodic biomass yield are obtained. In particular, it is proved that the maximum periodic biomass yield is in fact the maximum sustainable yield. The results extend and generalize the classical results of continuous harvest in renewable resources.
出处 《系统科学与数学》 CSCD 北大核心 2007年第4期520-528,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10471117)资助项目
关键词 全局渐近稳定 最优收获 最大可持续收获量 Gompertz系统. Global asymptotic stability, optimal harvesting, maximum sustainable yield, Gompertz ecosystem.
  • 相关文献

参考文献25

  • 1Agnew T T. Optimal exploitation of a fishery employing a non-linear harvesting function. Ecol. Modelling, 1979, 6: 47-57.
  • 2Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. New York: Wiley, 1976.
  • 3Goh B S. Management and Analysis of Biological Populations. Elsevier 1980.
  • 4Bainov D D and Simeonov P. Impulsive Differential Equations: Periodic Solution and Applications. London: Longman, 1993.
  • 5Bainov D D and Simeonov P. Systems with Impulse Effects. Ellis Horwood Chichester, England. 1982.
  • 6Lakshmikantham V, Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations. World Scientific Singapore, 1989.
  • 7Liu X. Impulsive stabilization and applications to population growth models. Rocky Mountain J. Math., 1995, 25(1): 381-395.
  • 8Ballinger G and Liu X. Permanence of population growth models with impulsive effects. Math. Comput Modelling, 1997, 26: 59-72.
  • 9Lakmeche A and Arino O. Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. Cont. Dis. Impulsive Syst., 2000, 7: 265- 287.
  • 10Panetta J C. A mathematical model of periodically pulsed chemotheray: Tumor recurrence and metastasis in a competition environment. Bull Math. Biol., 1996, 58: 425-447.

同被引文献90

  • 1王战平,赵春.一类周期种群系统的稳定性分析及最优控制问题[J].生物数学学报,2008,23(2):225-230. 被引量:15
  • 2赵春,王绵森,赵平.一类种群系统的适定性及最优收获问题[J].系统科学与数学,2005,25(1):1-12. 被引量:25
  • 3董玲珍,陈兰荪,孙丽华.OPTIMAL HARVESTING POLICY FOR INSHORE-OFFSHORE FISHERY MODEL WITH IMPULSIVE DIFFUSION[J].Acta Mathematica Scientia,2007,27(2):405-412. 被引量:7
  • 4陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 5王春花,李长国,裴永珍,刘俊峰.Gompertz模型的成年种群脉冲优化收获策略[J].天津理工大学学报,2007,23(4):80-82. 被引量:1
  • 6Bing Liu, Lansun Chen, Yujuan Zhang. The dynamics of a prey-dependent consumption model concerning impulsive control strategy[J]. Applied Mathematics and Computation, 2005, 169: 305- 320.
  • 7Xinzhu Meng, Jianjun Jiao, Lansun Chen. Global dynamics behaviors for a nonautonomous Lotka Volterra almost periodic dispersal system with delays[J]. Nonlinear Analysis: Theory, Methods Applications, 2008, 68(12): 3633-3645.
  • 8Jianjun Jiao, Xinzhu Meng, Lansun Chen. Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission[J]. Chaos, Solitons and Fractals, 2008, 38(3): 658-668.
  • 9Xinzhu Meng, Jianjun Jiao, Lansun Chen. The dynamics of an age structured predator-prey model with disturbing pulse and time delays[J]. Nonlinear Analysis: Real World Applications, 2008, 9: 547-561.
  • 10Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources.New York: Wiley, 1990.

引证文献13

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部