期刊文献+

提升小波支持向量机在交通流量预测中的应用 被引量:2

Lifting wavelet support vector machine for traffic flow prediction
下载PDF
导出
摘要 采用提升小波方法构造出一种满足双正交的小波函数,并将这种小波函数作为支持向量机的核函数;此外,用线性规划问题来代替二次规划问题及稀疏正则化,本质上确保了解的稀疏性。基于提升小波构造出提升小波支持向量机模型,并将其用于交通流量的预测中。仿真实验表明该模型具有良好的预测能力和泛化能力。 This paper presented a lifting wavelet to construct a new wavelet function which could be used as an allowable kernel function for support vector machine (SVM). Proposed a linear programming algorithm to replace quadratic programming in support vector machine solution process and sparse regularization, and guaranteed the sparseness of the solution. Based on the lifting wavelet, constructed and used a SVM model in the prediction of traffic flow. The simulation results illustrate the proposed method has well ability for prediction and generalization.
出处 《计算机应用研究》 CSCD 北大核心 2007年第8期275-277,共3页 Application Research of Computers
基金 四川省教育厅重点基金资助项目(0229957) 中国教育部博士点培养基金资助项目(20040613013)
关键词 提升小波 支持向量机 交通流量预测 lifting wavelet support vector machine traffic flow predictive
  • 相关文献

参考文献10

二级参考文献30

  • 1徐启华,丁兆奎.交通流量的递归神经网络实时预测模型研究[J].公路交通科技,2004,21(10):99-101. 被引量:6
  • 2徐启华,师军.基于支持向量机的航空发动机故障诊断[J].航空动力学报,2005,20(2):298-302. 被引量:54
  • 3赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 4张贤达 保铮.非平衡信号分析与处理[M].北京:国防工业出版社,1998.12-280.
  • 5[6]Chih-Wei Hsu,Chih-Chung Chang,and Chih-Jen Lin: A Practical Guide to Support Vector Classification National,Taiwan University.
  • 6[7]Chih-Chung Chang,and Chih-Jen Lin: LIBSVM a Library for Support Vector Machines, May 5,2003.
  • 7[3]Vladimir N Vapnik.统计学习理论的本质[M].张学工译.清华大学出版社,2000.9.
  • 8[5]Alex J Smola Bernhard Scholkopf: A Tutorial on Support Vector Regression NeuroCOLT Technical Report Series NC TR-1998-030 October 1998.
  • 9Amari S, Wu S. Improving support vector machine classifiers by modifying kernel function[J]. Neurocomputing.,1999,(12): 783-789.
  • 10Gao J B, Gunn S R, Harris R J. Mean field method for the support vector machine regression[J]. Neurocomputing.,2003,(50): 391-405.

共引文献84

同被引文献19

  • 1刘汉丽,周成虎,朱阿兴,李霖.多子群遗传神经网络模型用于路口短时交通流量预测[J].测绘学报,2009,38(4):363-368. 被引量:16
  • 2宋彦坡,彭小奇.一种基于小波分析的异常数据样本检测与修复方法[J].小型微型计算机系统,2006,27(2):325-329. 被引量:3
  • 3王晓原,刘海红.基于投影寻踪自回归的短时交通流预测[J].系统工程,2006,24(3):20-24. 被引量:18
  • 4张世英,陆晓春,李胜朋.时间序列在城市交通预测中的应用[J].天津大学学报(社会科学版),2006,8(5):370-372. 被引量:12
  • 5Goswami J C,Chan A K.小波分析理论、算法及其应用[M].许天周,黄春光,译.北京:国防工业出版社,2007.
  • 6BOGGESS A,NARCOWICH F J.小波与傅里叶分析基础[M].2版.芮国胜,康健,译.北京:电子工业出版社,2010.
  • 7Y. B. Wang,M. Papageorgiou,A. Messmer.Real-time freeway traffic state estimation based on extended kalman filter: a case study. Transportation Science . 2007
  • 8C. M. Fonseca,P. J. Fleming.Multiobjective genetic algorithms made easy: Selection, Shairng and Mating Restriction. 1st IEE/IEEE International Conferencd on Genetic Algorithms in Engineering systems . 1995
  • 9B.Liu,,L.Wang,,Y.H.Jin.Improved particle swarm optimization combined with chaos. Chaos,Solitons Fractals . 2005
  • 10Mascha Der Voort,Mark Doughert,Susan Watson.Combining kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Research Part C:Emerging Technologies . 1996

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部