期刊文献+

基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪 被引量:5

Chaotic Signal Detection and Track Based on Modified Extended Kalman Filter and Particle Filtering
下载PDF
导出
摘要 针对恶劣环境下混沌信号的检测与跟踪这一难题,以及基于一阶线性化的扩展卡尔曼滤波(EKF)技术存在的严重退化现象,提出了具有较强稳健性的修正EKF技术,获得了与Un-scented Kalman filter相匹配的性能。针对上述两种滤波方法在低信噪比情况下存在跟踪误差大的问题,为此引入了新颖的粒子滤波技术并且分析了该技术的可行性,最后仿真实验验证了该技术在低信噪比环境下的优越性。 In view of the difficult problem in the chaotic signal detection and track in the abominable environments, and the degenerate phenomenon of the traditional extended Kalman filter (EKF) which is based on the first order linearization, a modified EKF is developed that has much better robustness than the traditional EKF and gets almost the same performance as the Unscented Kalman filter. The two filters mentioned above experience large track error in the low signal noise ratio (SNR), and a novel particle filter which can be used in the nonlinear and non-Gaussian environ- ments is introduced and also its feasibility is analyzed. The simulation demonstrates the superiorities of particle filtering in the low SNR
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第4期514-517,共4页 Journal of Nanjing University of Science and Technology
基金 南京理工大学博士研究生创新培养基金
关键词 混沌信号 信号检测 扩展卡尔曼滤波 粒子滤波 chaotic signal signal detection extended Kalman filter particle filtering
  • 相关文献

参考文献11

  • 1Pecora L,Caroll T.Synchronization in chaotic systems[J].Physics Review Letter,1990,64:821 -823.
  • 2Kolumbán G,Kennedy M P,Chua L O.The role of synchronization in digital communications using chaospart Ⅱ:chaotic modulation and chaotic synchronization[J].IEEE Transactions on Circuits Systems-Ⅰ,1998,35:1 129-1 140.
  • 3Leung H,Zhu Z.Performance evaluation of EKF-based chaotic synchronization[J].IEEE Transactions on Circuits Systems-Ⅰ,2001,48:1 118-1 125.
  • 4Julier S,Uhlmann J,Durrant-Whyte H F.A new method for the nonlinear transformation of mean and covariance in filter and estimator[J].IEEE Transactions on Automatic Control,2000,45 (3):477 -482.
  • 5Azou S,Burel G.A complete receiver solution for a chaotic direct-sequence spread spectrum communication system[A].IEEE ISCAS[C].Kobe,Japan.IEEE Press,2005.3 813 -3 816.
  • 6Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistic Computing,2000,10 (3):197 -208.
  • 7Gustafsson F,Hrijac P.Particle filters for system identification with application to chaos prediction[A].SYSID[C].Rotterdam,NL:IFAC Publisher,2003.1 014-1 019.
  • 8Schon T,Gustafsson F.Particle filters for system identification of state-space models linear in either parameters or states[A].SYSID[C].Rotterdam,NL:IFAC Publisher,2003.1 287 -1 292.
  • 9Gaustafsson F,Hriljac P.Particle filters for prediction of chaos[A].The 13^th IFAC Symposium on System Identification[C].Rotterdam,NL:IFAC Publisher,2003.589-594.
  • 10宋耀良,金文,是湘全,刘中.基于双卷吸引子的混沌二相码序列及其模糊特性[J].南京理工大学学报,2000,24(1):37-41. 被引量:3

二级参考文献4

  • 1Pecora L M, Croroll T L. Synchronization inchaotic circuits.Phys Rev Lett, 1990,64(8):821~824
  • 2Li B X,Haykin S.Chaotic characterization of sea clutter. I'Onde Electrique,SpecialIssue on Radar, SEE,1994(3):60~65
  • 3Kislov V Y. Dynamical chaos and its use in electronics for the generation,reception,and processing of oscillations and information. J of Comm Tech & Electron,1993,38(16):82~109
  • 4Tamasevicus A,Mykolaitis G,Namajunas A. Double scroll in a simple‘2D’ chaoticoscillator electron.Lett,1996,32(14):1250~1251

共引文献2

同被引文献35

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2Kennedy M P, Kolumban G, and Kis G, et al.. Performance evaluation of FM-DCSK modulation in multipath environments [J]. IEEE Trans. on Circuits Systems- I, 2001, 48(12): 1702-1717.
  • 3Callegari S, Rovatti R, and Setti G. Chaos-based FM signals: application and implementation issues [J]. IEEE Trans. on Circuits Systems-I, 2003, 8(50): 1141-1147.
  • 4Snyder D L. The State-Variable Approach to Continuous Estimation with Applications to Analog Communication Theory [M]. Boston, MA: MIT Press, 1969: 129-135.
  • 5LA S B F and Robert B R. Design of an extended Kalman filter frequency tracker [J]. IEEE Trans. on Signal Processing, 1996, 44(3): 739-742.
  • 6Bittanti S and Savaresi S M. Frequency tracking via extended Kalman filter: parameter design. Proceedings of the American Control Conference, Chicago, IL, USA, 2000, 4: 2225-2229.
  • 7Doucet A, Godsill S, and Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statist. Comput., 2000,10(3): 197-208.
  • 8Doucet A, Godsill S, and Andrieu C. Particle methods for change detection, system identification, and control [J]. Proc. of the IEEE, 2004, 92(3): 423-438.
  • 9Amtlard P P, Brossier J M, and Moissan E. Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops [J]. Signal Processing, 2003, 83(1): 151- 167.
  • 10Fischler E and Bobrovsky B Z. Mean time to loose lock of phase tracking by particle filtering [J]. Signal Processing, 2006, 86(1): 3481-3485.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部