期刊文献+

一种新的退化交通标志图像的分类算法研究 被引量:2

Research on novel classification method for degraded traffic sign symbols
下载PDF
导出
摘要 为了识别退化的交通标志图像,提出了一种新的分类算法。该算法在处理图像的退化问题时,采用模糊—仿射不变距直接提取图像的特征而不需要图像的清晰化处理;在利用模糊—仿射不变距提取图像特征的基础上,采用递归正交最小二乘算法设计了一种新的径向基概率神经网络分类器。仿真结果表明:模糊—仿射不变距是一种有效的处理退化的交通标志图像的方法,所设计的径向基概率神经网络分类器不仅具有精简的结构,而且,具有较好分类和推广性能。 A novel classification method is presented for recognizing traffic sign symbols undergoing image degradations . In order to cope with degradations, the classifier uses the combined blur-affine invariants(CBAIs) of traffic sign symbols as the feature vectors which allow to recognize objects in the degraded scene without any restoration. A radial basis probabilistic neural network (RBPNN) is designed with recursive orthogonal least algorithm(ROLSA) and applied to the classification of degraded traffic signs. The simulation results indicate that CBAIs are efficient to the feature extraction of degraded images and the classification and generalization performance of the RBPNN classifier with the reduced structure are good.
出处 《传感器与微系统》 CSCD 北大核心 2007年第8期43-47,共5页 Transducer and Microsystem Technologies
关键词 交通标志 径向基概率神经网络 模糊-仿射不变距 递归正交最小二乘法 traffic sign radial basis probabilistic neural networks ( RBPNN ) combined blur-affine invariants (CBAIs) recursive orthogonal least algorithm(ROLSA)
  • 相关文献

参考文献20

  • 1Escalera A, Salichs M. Road traffic sign detection and classification [ J ]. IEEE Trans Industrial Electronics, 1997,44 ( 6 ) : 848 -- 859.
  • 2Gavrila D. Multi-feature hierarchical template matching using distance transforms [ C ]//IEEE 14th International Conference on Pattern Recognition, 1998:439 --444.
  • 3Miura J, Kanda T, Shirai Y. An active vision system for real-time traffic sign recognition [ C ]//lEEE Intelligent Transportation Systems ,2000:52 --57.
  • 4Fleyeh H. Shadow and highlight invariant color segmentation algorithm for traffic signs [ C ]// IEEE Coference on Cybernetics and Intelligent Systems ,2006 : 1 --7.
  • 5Lafuente-Arroyo S, Gil-Jimenez P, Maldonado-Bascon P, et al. Traffic sign shape classification evaluation I:SVM using distance to borders [ C ]//IEEE Intelligent Vehicles Symposium, 2005 : 557 --562.
  • 6Bahlmann C, Zhu Y, Ramesh V, et al. A system for traffic sign recognition, tracking, and recognition using color, shape, and motion information [ C ] // IEEE Intelligent Vehicles Symposium, 2005 : 255 -260.
  • 7Gil-Jimenez P, Lafuente-Arroyo S, Gomez-Moreno H, et al. Traffic sign shape classification evaluation II:FFT applied to the signature of blobs [ C ]//IEEE Intelligent Vehicles Symposium, 2005 : 607 --612.
  • 8Suk T, Flusser J. Combined blur and affine moment invariants and their use in pattern recognition [ J ]. Pattern Recognition, 2003 (36) :2895 -2907.
  • 9Douville P. Real-time classification of traffic signs [ J ]. Real-time Imaging,2000,6(3) :185 -193.
  • 10Fang C Y,Fuh C S,Yen P S,et al. An automatic road sign recognition system based on a computation model of human recognition processing [ J ]. Computer Vision and Image Understanding,2004( 96 ) :237 --268.

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部