期刊文献+

并行遗传算法在并行多机调度中的应用 被引量:4

Parallel Genetic Algorithm Applied to Multi-tasks Schedule
下载PDF
导出
摘要 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。但随着求解问题的复杂性及难度的增加,提高GA的运行速度便显得尤为突出,采用并行遗传算法(PGA)是提高搜索效率的方法之一。本文分析了并行遗传算法的四种模型,最后将其应用于多机任务调度中。 Genetic Algorithm (GA) is one self-adaptive universal optimization searching algorithm, formed by attempting to simulate biological process of inheritance and evolution in natural environment. GA obtains the best solution or the most satisfactory solution though generations of chromosomes' constant evolution inclusive of operations like reproduce, crossover and mutation, until it reaches certain function index point and convergence conditions, This paper analysis four models about parallel genetic algorithm. Finally, parallel Genetic algorithm applied to multi-tasks scheduling.
出处 《微计算机信息》 北大核心 2007年第02X期200-201,共2页 Control & Automation
基金 国家自然科学基金(项目编号NO.60473085)
关键词 遗传算法 并行遗传算法 任务调度 genetic algorithm, parallel genetic algorithm, task schednling
  • 相关文献

参考文献6

  • 1张永辉,姚昱,杨学良.GPS在分布式实时车辆监控系统中的应用[J].微计算机信息,1999,15(4):47-49. 被引量:4
  • 2Wanneng Shu, Shijue Zheng. A Real-course-based Load Balanced Algorithm of VOD Cluster.2005 International Symposium on Computer Science and Technology(ISCST 2005)October20-24,Ningbo.
  • 3刘红,白栋,丁炜.应用于MPLS网络负载均衡的启发式自适应遗传算法研究[J].通信学报,2003,24(10):39-45. 被引量:27
  • 4Albert Y.Zomaya, Yee-Hwei. The Observations on Using Genetic Algorithm for Dynamic Load-Balancing [J]. I EEE Trans. on Parallel and Distributed Systems,2001,12(9):899-911.
  • 5Cardellini V., Colajanni M., "Dynamic load balancing on Webserver systems", IEEE Internet Computing, Volume: 3 Issue: 3 , May-June 1999 Page(s): 28 - 39.
  • 6Li,J.and H.Kameda, "Load balancing problems for multiclass jobs in distributd/parallel computer systems"IEEE Transactions on Computers, 47, 3, Mar.1998,322-332

二级参考文献10

  • 1AWDUCHE D, MALCOLM J, JAGOGBUA J, et al. Requirements for Traffic Engineering over MPLS[S]. RFC 2702, 1999.
  • 2XIAO X P. Traffic enRineering with MPLS in the Internet[J]. IEEE Networking, 2000, 14(2): 28-33.
  • 3GIRISH M K, ZHOU B, HU J Q. Formulation of the traffic engineering problems in MPLS based IP networks[A]. The Fifth IEEE ISCC[C]. Antibes, France, 2000. 214-219.
  • 4WANG Y F, WANG Z. Explicit routing algorithms for Intemet Waffic engineering[A]. IEEE ICCCN'99[C]. Boston, MA, 1999.582-588.
  • 5LEE Y, SEOK Y, CHOI Y. A consu'ained multipath traffic engineering scheme for MPLS networks[A]. ICC'02[C]. New York, 2002.2431-2436.
  • 6BERTSEKAS D. GALAGER R. Data Networks[M]. NJ: Printice Hall, 1992.
  • 7ALOUANE A B, BEAN J C. A generic algorithm for the multiple-choice integer program[J]. Operations Research, 1997,45(1):92-101.
  • 8SRINIVAS M, PATNAINK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, MAN and Cybernetics,1994,24(4): 656-667.
  • 9CHONG E I, SANJEEV S R, MADDILA R, et al. On finding single-source single-destination k shortest paths[A]. ICCI '95[C].Peterborogh, Canada, 1995.40-47.
  • 10WAXMAN B M. Routing of multipoint connections[J]. IEEE Jounlal on Selected Areas in Communications, 1988, 6(9): 1617-1622.

共引文献29

同被引文献32

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部