摘要
GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。但随着求解问题的复杂性及难度的增加,提高GA的运行速度便显得尤为突出,采用并行遗传算法(PGA)是提高搜索效率的方法之一。本文分析了并行遗传算法的四种模型,最后将其应用于多机任务调度中。
Genetic Algorithm (GA) is one self-adaptive universal optimization searching algorithm, formed by attempting to simulate biological process of inheritance and evolution in natural environment. GA obtains the best solution or the most satisfactory solution though generations of chromosomes' constant evolution inclusive of operations like reproduce, crossover and mutation, until it reaches certain function index point and convergence conditions, This paper analysis four models about parallel genetic algorithm. Finally, parallel Genetic algorithm applied to multi-tasks scheduling.
出处
《微计算机信息》
北大核心
2007年第02X期200-201,共2页
Control & Automation
基金
国家自然科学基金(项目编号NO.60473085)
关键词
遗传算法
并行遗传算法
任务调度
genetic algorithm, parallel genetic algorithm, task schednling