期刊文献+

有理Bézier三角曲面片低阶导矢界的估计(英文) 被引量:1

Bound Estimations on Lower Derivatives of Rational Triangular Bézier Surfaces
下载PDF
导出
摘要 基于Bézier三角曲面的de Casteljau算法,同时运用一些恒等式和基本不等式,给出了两类有理Bézier三角曲面片低阶导矢的上界.第一类上界是用控制顶点凸包直径表示的,在一阶偏导的情况下,它是对已有上界的改进;在二阶偏导情况下,当最大权因子与最小权因子比值大于2时,它也是对已有上界的改进.第二类上界是用相邻控制顶点间距离的最大值来表示的. Based on the de Casteljau algorithm for triangular patches, also using some existing identities and elementary inequalities, this paper presents two kinds of new magnitude upper bounds on the lower derivatives of rational triangular Bézier surfaces. The first one, which is obtained by exploiting the diameter of the convex hull of the control net, is always stronger than the known one in case of the first derivative. For the second derivative, the first kind is an improvement on the existing one when the ratio of the maximum weight to the minimum weight is greater than 2; the second kind is characterized as being represented by the maximum distance of adjacent control points.
出处 《软件学报》 EI CSCD 北大核心 2007年第9期2326-2335,共10页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.60473130(国家自然科学基金) the National Basic Research Program of China under Grant No.2004CB318000(国家重点基础研究发展计划(973))
关键词 有理 Bézier三角曲面 DE CASTELJAU算法 上界 中间权因子 中间点 rational triangular Bézier surface de Casteljau algorithm upper bound intermediate weight intermediate point
  • 相关文献

参考文献3

二级参考文献5

  • 1田捷,纯粹数学与应用数学,1988年,3卷,1期
  • 2胡事民,Proceedings of CAD/Graphics’93,1993年
  • 3胡事民,高校应用数学学报,1993年,8卷,290页
  • 4Chang C Z,American Mathematical,1984年,91卷,634页
  • 5汪国昭,浙江大学学报,1984年,计算几何专辑

共引文献3

同被引文献25

  • 1杨义军,雍俊海.有理Bézier曲面的标准化[J].计算机辅助设计与图形学学报,2007,19(2):245-250. 被引量:3
  • 2郭凤华.参数曲线的最优参数化[J].计算机辅助设计与图形学学报,2007,19(4):464-467. 被引量:10
  • 3Floater M S. Derivatives of rational Bezier curves [J]. Computer Aided Geometric Design, 1992, 9(3) : 161-174.
  • 4Saito T, Wang G J, Sederberg T W. Hodographs and normals of rational curves and surfaces [J]. Computer Aided Geometric Design, 1995, 12(4): 417-430.
  • 5Wang G Z, Wang G J. Higher order derivatives of a rational Bezier curve [J]. Graphical Models and Image Processing, 1995, 57(3): 246-253.
  • 6Hermann T. On the derivatives of second and third degree rational Bezier curves [J]. Computer Aided Geometric Design, 1999, 16(3):157-163.
  • 7Kim D S, Jang T, Shin H, et al. Rational Bezier form of hodographs of rational Bezier curves and surfaces [J]. Computer Aided Design, 2001, 33(4) : 321-330.
  • 8Selimovic I. New bounds on the magnitude of the derivative of rational Bezier curves and surfaces [J]. Computer Aided Geometric Design, 2005, 22(4): 321-326.
  • 9Zhang R J, Ma W Y. Some improvements on the derivative bounds of rational Bezier curves and surfaces[J]. Computer Aided Geometric Design, 2006, 23(4): 563-572.
  • 10Huang Y D, Su H M. The bounds on derivatives of rational Bezier curves [J].Computer Aided Geometric Design, 9:006, 23(9): 698-702.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部