期刊文献+

具有多个非线性源项的波动方程 被引量:7

Wave Equations With Several Nonlinear Source Terms
下载PDF
导出
摘要 利用位势井方法研究在有界区域上具有多个非线性源项的波动方程初边值问题.给出了位势井的结构和位势井深度函数的性质.通过引进位势井族得到了在这些问题的流之下的一些集合不变性以及解的真空隔离,揭示了只要问题的初值属于位势井内或位势井外,则问题在今后所有时间内的解都存在于位势井内或井外,同时存在一个没有解的空间区域.进而给出了解的整体存在和不存在的门槛结果.最后,利用相同的方法讨论了具有临界初始条件的问题. The initial boundary value problem of nonlinear wave equations with several nonlinear source terms in a bounded domain is studied by potential well method. The structure of potential wells and some properties of depth function of potential well are given. The invariance of some sets under the flow of these problems and the vacuum isolating of solutions are obtained by introducing a family of potential wells, which indicates that if initial value of the problem belongs to potential well or its outside, all the solutions for the problem are in the same potential well or its outside respectively in any time. At the same time, there exists a region, in which there are no any solutions. Then the threshold result of global existence and nonexistence of solutions are given. Finally the problems with critical initial conditions are discussed.
出处 《应用数学和力学》 CSCD 北大核心 2007年第9期1079-1086,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10271034)
关键词 波动方程 位势井 整体存在性 不存在性 wave equation potential well global existence nonexistence
  • 相关文献

参考文献15

  • 1Sattinger D H.On global solution of nonlinera hyperbolic equations[J].Archive for Rational Mechanics and Analysis,1968,30:148-172.
  • 2Payne L E,Sattinger D H.Sadle points and instability of nonlinear hyperbolic equations[ J].Israel Journal of Mathematics,1975,22:273-303.
  • 3Tsutsumi M.On solutions of semilinear differential equations in a Hilbert space[J].Math Japan,1972,17:173-193.
  • 4LIU Ya-cheng.On potential wells and vacuum isolating of solutions for semilinear wave equations[J].Journal of Differential Equations,2003,192(1):155-169.
  • 5LIU Ya-cheng,ZHAO Jun-sheng.Multidimensional viscoelasticity equations with nonlinear damping and source terms[J].Nonlinear Analysis,2004,56(6):851-865.
  • 6LIU Ya-cheng,ZHAO Jun-sheng.Nonlinear parabolic equations with critical initial conditions J (u0)= d or I (u0) = 0[J].Nonlinear Analysis,2004,58(7/8):873-883.
  • 7Tsutsumi M.Existence and nonexistence of global solutions for nonlinear parabolic equations[J].Publications of the Research Institute for Mathematical Sciences,1972/1973,8:211-229.
  • 8Lions J L.Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires[ M ].Paris:Dunod Gauthier-Villars,1969.
  • 9Ikehata R.Some remarks on the wave equations with nonlinear damping and source terms[ J].Nonlinear Analysis,1996,27(10):1165-1175.
  • 10Nakao N,Ono K.Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J].Mathematische Zeitschrift,1993,214(2):325-342.

同被引文献50

  • 1GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China,2 The Graduate School of China Academy of Engineering Physics,P.O.Box 2101,Beijing 100088,China,3 Department of Information and Computer Science,Guangxi University of Technology,Liuzhou 545006,China.The attractor of the stochastic generalized Ginzburg-Landau equation[J].Science China Mathematics,2008,51(5):955-964. 被引量:11
  • 2刘亚成,王锋.一类多维非线性Sobolev-Galpern方程[J].应用数学学报,1994,17(4):569-577. 被引量:27
  • 3陈宁.人口问题中具广义Ginzbur-Landau型方程解的渐近性和Blow-up[J].生物数学学报,2005,20(3):307-314. 被引量:5
  • 4吕淑娟.人口问题中一广义扩散模型初边值问题的动力性态[J].生物数学学报,1997,12(1):48-51. 被引量:2
  • 5Sattinger D H. On global solution of nonlinear hyperbolic equations[ J]. Arch Rat Mech Anal, 1968, 30:148 -172.
  • 6Payne L E, Sattinger D H. Sadie points and instability of nonlinear hyperbolic equations[ J]. Israel J Math, 1975, 22 : 273 - 303.
  • 7Cavalcanti M M, Domingos C V N. Existence and asymptotic stability for evolution problem on manifolds with damping and source terms[ J ]. J Math Anal Appl, 2004, 291 : 109 -127.
  • 8Esquivel - Avila J A. A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations [ J ]. Nonlinear Anal, 2003, 52: 1111-1127.
  • 9Esquivel - Avila J A. The dynamics of a nonlinear wave equation[ J]. J Math Anal Appl, 2003, 279 : 135 - 150.
  • 10Esquivel -Avila J A. Qualitative analysis of a nonlinear wave equation [ J ]. Discrete Continuous Dynam Syst, 2004, 10 (3) : 787 -804.

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部