期刊文献+

海量平面点集Voronoi图的构造算法 被引量:6

Constructional algorithm for Voronoi diagram of massive planar point sets
下载PDF
导出
摘要 进一步发展平面点集Voronoi图的增量式外置算法.在对"海量"点组成的平面点集进行Voronoi划分时,设计"硬盘数据文件——内存结构体数组"之间动态的数据交互方案,避开计算机内存的限制,有效实现了数十万Voronoi晶胞集合体的构造,存储Voronoi图几何信息的数据最后以文本文件的形式输出,方便Voronoi图在工程实际中的应用与二次开发. External incremental algorithm for Voronoi diagram of massive planar point sets was further developed. During the Voronoi tessellation on a planar point set composed of massive points, a technical scheme of dynamic data-exchange between hard disk data file and internal memory structural array designed so, that the limitation of computer internal memory storage need not be considered and the construction of massive Voronoi cells as many as hundreds thousant in number was effectively implemented. The data that store information of Voronoi cells could be outputted in the format of text file. This made it greatly convenient to apply the Voronoi cells to engineering applications and secondary exploitation.
出处 《兰州理工大学学报》 CAS 北大核心 2007年第4期102-105,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(50571042)
关键词 增量算法 VORONOI图 海量平面点集 incremental algorithm Voronoi diagram massive planar point sets
  • 相关文献

参考文献8

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:75
  • 2LEE D T.Medial axis transformation of a planar shape[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,1982,4(4):363-369.
  • 3张大卫,闫兵,倪雁冰,曾子平.平面连通域VORONOI图的算法[J].计算机辅助设计与图形学学报,1997,9(5):427-435. 被引量:11
  • 4FORTUNE S.A sweepline algorithm for Voronoi diagrams[J].Algorithmica,1987,2:153-174.
  • 5普雷帕拉塔FP 沙莫斯MI 庄心谷 译.计算几何导论[M].北京:科学出版社,1990..
  • 6廖士中,王晓东.近似线性平均复杂性的平面点集Voronoi图增量算法的设计与实现[J].计算机科学,2002,29(9):73-75. 被引量:2
  • 7KLEIN R,MEHLHORN K,MEISER S.Randomized incremental construction of abstract Voronoi diagrams[J].Computational Geometry,1993,3(3):157-184.
  • 8CLARKSON K L,MEHLHORN K,SEIDEL R.Four results on randomized incremental constructions[J].Computational Geometry,1993,3(4):185-212.

二级参考文献58

  • 1[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 2[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 3[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 4[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 5[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 6[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 7[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.
  • 8[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380.
  • 9[7]Aurenhammer F. Power diagrams: properties,algorithms, and applications[J]. SIAM Journal on Computing, 1987, 16(1): 78~96.
  • 10[8]Augenbaum J M, Peskin C S. On the construction of the Voronoi mesh on a sphere[J]. Journal of Computational Physics, 1985, 59: 177~192.

共引文献93

同被引文献45

  • 1赵寿根,程伟.压电陶瓷材料电学性能参数测量研究[J].压电与声光,2005,27(2):200-202. 被引量:7
  • 2王永康.炮孔平均品位计算方法的分析与比较[J].有色金属设计,2006,33(3):12-15. 被引量:2
  • 3李翠平,李仲学,余东明.基于泰森多边形法的空间品位插值[J].辽宁工程技术大学学报(自然科学版),2007,26(4):488-491. 被引量:19
  • 4Anderson M P, Grest G S, Srolovitz D J. Computer simulation of normal grain growth in three dimensions[J]. Philophicat Magazine B, 1989,59 (3) : 293- 329.
  • 5Song X, Liu G. A simple and efficient three-dimension Monte Carlo simulation of grain growth [J]. Scripta Materialia, 1998,38( 11 ) : 1691-1696.
  • 6Song X, Liu G, Gu N. Influence of the secondphase particle size on grain growth based on computer simulation [J]. Materials Science and Engineering, 1999,270(2) : 178-182.
  • 7Gandin C A, Rappaz M. A coupled finite elementcellular automaton model for the prediction of dendritic grain structures in solidification processes[J].Acta Metall, 1994,42(7) : 2233-2246.
  • 8Gandin C A, Desbiolles J L, Rappaz M, et al. A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 1999,30(12) :3153-3165.
  • 9Moorthy S, Ghosh S. A voronoi cell finite element model for particle cracking in elastic-plastic composite materials[J]. Comput Methods Appl Mech Eng, 1998,151:377-400.
  • 10Ghosh S, Moorthy S. Three dimensional Voronoi cell finite element model for modeling mierostructures with ellipsoidal heterogeneities[J]. Computational Mechanics, 2004,34 (6) : 510-531.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部