摘要
该文证明了波动方程uu-△u=F(u,Du)的Cauchy问题整体经典解的存在性唯一性,并对方程中出现的每项u,Du,D2u的某种范数均得到了与齐次方程相同的衰减估计,其结果补充和丰富了[4]中F不显含u时的结果.
In this paper the existence and uniqueness of global Classical solution to thecauchy problem for the wave equation to utt - △u = F(u , Du) are proved. Moreover , the decaying esimates of every terms u,Du,Du appearing in the equation are obtained, which arethe same as the corresponding homogeneous equation. The results of this paper supplementsthe results in [4] where F does not contain u explicitly.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第2期121-128,共8页
Acta Mathematica Scientia
基金
河南省科委自然科学基金
关键词
波动方程
范数
衰减性
柯西问题
global solution, Cauchy problem, decaying estimates