期刊文献+

空芯光子晶体光纤光子带隙的测量 被引量:2

Measurement for the Photonic Bandgap of Hollow-core Photonic Crystal Fiber with Transmission Spectrum Method
下载PDF
导出
摘要 首先介绍了全矢量平面波法(FVPWM),重点分析和计算了二维三角排布的光子晶体平面内传播的带隙结构图,运用数值模拟出了对应的被测空芯光子晶体光纤(HC-PCF)平面内的带隙结构图。通过实验测量了HC-PCF以及石英棒的透射谱,根据数值计算得出了HC-PCF的相对透射谱。将实验计算得到的结果与理论模拟的结果进行了对比,发现两者在相近的归一化频率处有带隙,存在一致性。 A full-vector plane-wave methed(FVPWM) is introduced to calculate the photonic crystal in-plane photonic bandgap of a 2-D triangular structure. Using the numerical simulation,we can obtain the in-plane bandgap structure of hollow-core photonic crystal fiber. In our experiments,we measure the transmission spectra of a hollow-core photonic crystal fiber and silica red,and by using the numerical calculation the relative transmission spectrum of hollow-core photonic crystal fiber can be gotten. Compared with the theory simulation,we find that the experimental result is accordant with the simulation,they have the same bandgap in the same normalized frequency.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2007年第4期457-459,共3页 Journal of Optoelectronics·Laser
基金 国家高技术研究发展计划资助项目(2003AA311010) 国家重点基础研究发展计划资助项目(2003CB314905)
关键词 光子带隙(PBG) 空芯光纤 全矢量平面波法(FVPWM) 实验 测量 透射谱 photonic bandgap (PBG) hollow-core fiber full-vector plane-wave method (FVPWM) experiment measurement transmission spectrum
  • 相关文献

参考文献10

  • 1Knight J C,Russell P S.New ways to guide light[J].Science,2002,296:276-277.
  • 2Knight J C,Birks T A,Russell P S,et al.All-silica single-mode fiber with photonic crystal cladding[J].Opt Lett,1996,21 (19):1547-1549.
  • 3Cregan R F,Mangan B J,Knight J C,et al.Single-mode photonic band gap guidance of light in air[J].Science,1999,285 (5433):1537-1539.
  • 4Birks T A,Roberts P J,Russell P S,,et al.Full 2-D photonic band gaps in silica/air structures[J].Electron Lett,1995,31:1941-1947.
  • 5Kristian G Hougaared,Anders Bjaklev.coupling to photonic crystal fibers[A].OFC[C].2002,627-628.
  • 6WU Chong-qing.The Method of Light Wave-guide[M].Beijing:Tsinghua University Publishers,2005.4-7.(in Chinese)
  • 7Huang Kun.Solid State Physics[M].Beijing:Higher Education Press,2001.154-156.(in Chinese)
  • 8陆晓东,韩培德,全宇军,叶志成,窦金锋,吴黎,赵春华.格点形状和取向对二维光子晶体禁带的影响[J].光电子.激光,2005,16(11):1336-1341. 被引量:4
  • 9武鹏,黄辉,黄永清,任晓敏.新型的波长选择波导光电探测器的研究[J].光电子.激光,2005,16(2):129-134. 被引量:4
  • 10JIANG Yue-song,YAN Ping,LIU Zhen-yu.Photoelectron Technique Experiment[M].Beijing:Beijing Insitute of Technology Publishers,2002.70-73.(in Chinese)

二级参考文献26

  • 1HUXiao-Yong,LIUYuan-Hao,CHENGBing-Ying,ZHANGDao-Zhong,MENGQing-Bo.Fabrication of High Quality Three-Dimensional Photonic Crystals[J].Chinese Physics Letters,2004,21(7):1289-1291. 被引量:2
  • 2Jasmin S,Vodjdani N,Renaud J C,et al.Diluted- and distributed- absorption microwave waveguide photodiodes for high efficiency and high power[J].IEEE Trans Microwave Theory and Tech,1997,45(8):1337-1341.
  • 3Tang J,Zheng Q.Applied Optics of Thin-film[M].Shanghai:Shanghai Science and Technology Publishing House,1984.49-51.(in Chinese)
  • 4Ren X M,Campbell J C.Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer[J].IEEE J Quantum Electron,1996,32:2012-2025.
  • 5HUANG Hui.Research on key devices for WDM optical receiver.Chapter 5 one-mirror inclined three-mirror-cavity demultiplexing receiver device[D].Beijing:Beijing University of Post and Telecommunication.(in Chinese)
  • 6Chao C P,Shiau G L,Forrest S R.1.3 μm wavelength,InGaAsP/InP folded-cavity surface-emitting grown by gas source molecular beam epitaxy[J].Photon Technol Lett,1994,6:1406-1408.
  • 7Unl(u) M S,Strite S.Resonant cavity enhanced photonic de-vices[J].J Appl Phys,1995,78(2):607-639.
  • 8Amann M C.Analysis of a pin photodiode with integrated waveguide[J].Electron Lett,1987,28:885-887.
  • 9Kato K,Hata S,Kawano K,et al.A high-efficiency 50GHz InGaAs multimodes waveguide photodetector[J].IEEE J Quantum Electron,1992,28:2728-2735.
  • 10Magnin V,Giraudet L,Harari J,et al.Design,optimization,and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3 and 1.55 μm wavelength use[J].IEEE Lightwave Tech Lett,2002,20(3):477-488.

共引文献6

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部