期刊文献+

基于最大互信息方法的机械零件图像识别 被引量:1

Machine Part Image Recognition by Using Maximization of Mutual Information
下载PDF
导出
摘要 提出了应用最大互信息方法进行零件图像识别的方法,它利用图像的信息熵描述图像的特征,结合图像的颜色信息及局部形状信息,以互信息作为衡量两幅图像相似性的测度函数进行图像识别,弥补了直方图表达空间信息的不足。该方法既满足位置不变性,又能避免进行图像分割,从而避免了因图像分割引起的复杂计算,使算法容易实现。实验结果表明,该方法提高了零件图像识别的精度、稳定性和可靠性。 A new approach to the problem of machine part image recognition is proposed by using maximization of mutual information. The method applies entropy to measure image feature, combined with color information and local shape information, and uses mutual information as a new matching criterion between the images for image recognition. This method solves the problem that histogram algorithm can not represent the spatial information. This method not only has the feature of translation invariant, but also avoids image segmentation which may lead to a complex calculation, so it can be realized easily. The result shows that proposed approach is accuracy, stability, and reliability in the processing of machine part image recognition.
作者 葛森 黄大贵
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第4期801-804,共4页 Journal of University of Electronic Science and Technology of China
关键词 图像识别 机械零件图像 互信息 entropy image recognition machine part image mutual information
  • 相关文献

参考文献9

二级参考文献42

  • 1蒋永平,张培忠,徐杜.柔性制造教学实验系统[J].中国机械工程,1994,5(3):32-33. 被引量:4
  • 2Chan S K. Content-based Image Retrieval[D]. Singapore: National Urfiversity of Singapore, 1994.
  • 3Swain M J, Ballard D H. Color Indexing[J]. Int J Comput Vision, 1991, 7(1): 11-32.
  • 4Gong st', Zhang H, Chuan C. An Image Database System with Fast Image Indexing Capability Based on Colour Histograms[ A].Proceedings of IEEE 10's Ninth Annum International Conference[ C]. Singapore: IEEE, 1994. 407-411.
  • 5Persoon E, Fu K S. Shape Discrimination Using Fourier Descriptors[J] . IEEE Trans on Systems, Man and Cybernetics, 1977, 7(3) :170-179.
  • 6Kauppinen H, Seppanen T, Pietikainen M. An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape ClassLfication[J]. IEEE Trans on PAMI, 1995, 17(2): 201-207.
  • 7Mehtre B M, Kankanhalli M S, Lee W F. Shape Measures for Content Based Image Retrieval: a Comparison [ J ]. Information Processing & Management, 1997, 33(3) : 319-337.
  • 8Lu G J, Sajjanhar A. Region-based Shape Representation and Similarity Measure Suitable for Content-based Image Retrieval[J].Multimedia System, 1999, 7(2): 165-174.
  • 9Safar M. Shahabi C, Sun X. Image Retriew, d by Shape: a Comparative Study[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE. 2000. 141-144.
  • 10Charkrabarti K, Binderberger M O, Porkaew K, et al. Similar Shape Retrieval in MARs[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE, 2000. 709-712.

共引文献136

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部