期刊文献+

求解多选择背包问题的改进差分演化算法 被引量:15

A Modified Differential Evolution Algorithm for Multiple-choice Knapsack Problem
下载PDF
导出
摘要 首先将差分演化算法(DEA)的演化机制归结为差异算子(DO)和选择算子(SO)的作用,然后基于离散域上的多选择背包问题(MCKP),通过重新定义DEA算法的差异算子中的三种基本运算,并采用个体正整数编码方法和处理非正常编码的快速微调策略,提出了一种求解MCKP问题的改进差分演化算法(MDEA),第一次将DEA用于求解组合最优化问题.对经典MCKP问题实例的计算表明:MDEA算法不但是可行的,而且是高效的. In this paper, at first conclude the evolution mechanism of differential evolution algorithm (DEA) to the function of differential operator and select operator. Then, advanced a modified differential evolution algorithm (MDEA) for multiple- choice knapsack problem (MCKP) over discrete space, which use individual positive coding method and combine with the subtle adjusting strategy of non-normal coding through newly defining three basic operations of differential operator(DO) in DEA. First apply DEA to solve combinatorial optimization problems. Calculations of instances to classical MCKP show that MDEA is not only feasible, but also have a high efficiency.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第9期1682-1685,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(60471022)资助
关键词 差分演化算法 多选择背包问题 个体编码 差异算子 differential evolution algorithm multiple-choice knapsack problem individual coding differential operator
  • 相关文献

参考文献10

  • 1Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 2Storn R,Price K.Differential evolution for multi-objective optimization[C].Evolutionary Computation,2003,4():8-12.
  • 3Vesterstrom J,Thomsen R.A comparative study of differential evolution,particle swarm optimization,and evolutionary algorithm on numerical Benchmark problems[C].Evolutionary Computation,CEC2004 Volume 2,1980-1987.
  • 4Abbas H A,Sarker R,Newton C.PDE:a pareto-frontier diffe rential evolution approach for multi-objective optimization problems[C].In:Proceedings of the 2001 Congress on Evolutionary Computation,IEEE,Piscataway,NJ,USA.ISBN 0-7803-6657-3.2001,Vol.2,971-978.
  • 5Parsopoulos K E,Tasoulis D K,Pavlidis N G,et al.Vector evaluated differential evolution for multiobjective optimization[C].Evolutionary Computation Proceedings of the 2001,Volume:2,971-978.
  • 6Babu B V,Anbarasu B.Multi-objective differential e-volution (MODE) an evolutionary algorithm for multiobjective optimization problem (MOOPs)[EB/OL].http://discovery.bits-pilani.ac.in/discipline/chemical/BVb/.
  • 7Zhang W J,Xie X F.DEPSO:hybrid particle swarm with differential evolution operator[Z].IEEE 0-7803-7952-7,2003.
  • 8Gen M,Cheng R,Sasaki M.Multiple-choice knapsack problem using genetic algorithms[Z].Advances in Engineering Design and Automation Research Ⅱ,Maui HI,1998,1127-1132.
  • 9Gen M,Cheng R.Genetic algorithms and engineering design[M].Wiley,New York,1997.
  • 10Michalewicz Z.Genetic algorithms+Data structures=evolution programs[M].Springer,Berlin,1999.

同被引文献141

引证文献15

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部