期刊文献+

单片集成的高性能压阻式三轴高g加速度计的设计、制造和测试 被引量:8

Design,Fabrication,and Characterization of a High-Performance Monolithic Triaxial Piezoresistive High-g Accelerometer
下载PDF
导出
摘要 设计、制造并测试了一种单片集成的压阻式高性能三轴高g加速度计,量程可达105g.x和y轴单元均采用一种带微梁的三梁-质量块结构,z轴单元采用三梁-双岛结构.与传统的单悬臂梁结构或者悬臂梁-质量块结构相比,这两种结构均同时具有高灵敏度和高谐振频率的优点.采用ANSYS软件进行了结构分析和优化设计.中间结构层主要制作工艺包括压阻集成工艺和双面DeepICP刻蚀,并与玻璃衬底阳极键合和上层盖板BCB键合形成可以塑封的三层结构,从而提高加速度计的可靠性.封装以后的加速度计采用落杆方法进行测试,三轴灵敏度分别为2.28,2.36和2.52μV/g,谐振频率分别为309,302和156kHz.利用东菱冲击试验台,采用比较校准法测得y轴和z轴加速度计的非线性度分别为1.4%和1.8%. A silicon machined high-performance monolithic triaxial piezoresistive accelerometer is developed for measurements on the order of 100,000g. A three-beam-mass scheme with tiny beams is developed for the x and y axial elements, and a three-beam-twin-mass structure is developed for the z axial element. Both of these structures feature high sensitivity and high resonance frequency compared with a conventional cantilever structure or cantilever-mass structure. ANSYS is used to analyze and optically design the accelerometer. The three sensing elements are monolithically integrated by micromachining techniques of double-sided deep etching combined with piezoresistive processes. The middle structure silicon layer is anodic bonded with glass substrate and BCB bonded with a top cap silicon layer for the purpose of plastic packaging to improve the reliability of the accelerometer. A dropping-bar system is used to characterize the accelerometer. The sensitivities in the x, y, and z axes are measured to be 2.28,2.36,and 2.52μV/g, respectively,while the corresponding resonant frequencies are 309, 302,and 156kHz. Using a Dongling shock test machine,the nonlinearity is tested by comparison calibration and measured to be 1.4% and 1.8% for the y and z axial elements,respectively.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第9期1482-1487,共6页 半导体学报(英文版)
关键词 硅微机械加工技术 三轴加速度计 压阻 高g 塑封 silicon micromachining technology triaxial accelerometer piezoresistive high-g plastic package
  • 相关文献

参考文献9

  • 1Yazdi N,Ayazi F,Najafi K.Micromachined inertial sensors.Proceedings of the IEEE,1998,86(8):1640.
  • 2Najafi K,Chae J,Kulah H,et al.Micromachined silicon accelerometers and gyroscopes.International Conference on Intelligent Robots and Systems,Las Vegas,2003:2353.
  • 3Srikar V,Senturia S.Reliability of micro-electro-mechanical systems (MEMS) in shock environments.J Microelectromech Syst,2002,11:206.
  • 4Ning Y,Loke Y,McKinnon G.Fabrication and characterization of high g-force,silicon piezoresistive accelerometers.Sensors and Actuators,1995,A48:55.
  • 5Dong Jian,Li Xinxin,Wang Yuelin,et al.Silicon micromachined high-shock accelerometers with a curved-surfaced-application structure for over-range stop protection and freemode resonance depression.J Micromech Microeng,2002,12:742.
  • 6Davies B,Barron C,Montague S,et al.High g MEMS integrated accelerometer.Proceedings of SPIE,1997,3046:52.
  • 7Kwon K,Park S.Three axis piezoresistive accelerometer using polysilicon layer.Transducers,1997:1221.
  • 8Huang Weidong,Cai Xia,Xu Bulu,et al.Package effects on the performances of MEMS for high-g accelerometer with double-cantilevers.Sensors and Actuators A,2003,102:268.
  • 9Togami T C,Baker W E,Forrestal M J.A split hopkinson bar technique to evaluate the performance of accelerometers.J Appl Mechan,1996,63:353.

同被引文献72

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部