期刊文献+

EM算法与K-Means算法比较 被引量:7

Comparison of EM and K-Means Algorithms
下载PDF
导出
摘要 聚类是广泛应用的基本数据挖掘方法之一,它按照数据的相似性和差异性将数据分为若干簇,并使得同簇的尽量相似,不同簇的尽量相异。目前存在大量的聚类算法,本文仅考察了划分方法中的两个常用算法:EM算法和K-Means算法,并重点剖析了EM算法,对实验结果进行了分析。最后对算法进行了总结与讨论。 Clustering is one of basic data mining forms, it divides data to many clusters according to the similarity and dissimilarity between the data. And the data in one cluster are more similar than others. There are many clustering algorithms, this paper only introduces two common clustering algorithms: EM algorithm and K-Means algorithm, emphasizes EM algorithm, and at last, discusses the result of the algorithm and draws a conclusion.
作者 黄颖 李伟
出处 《计算机与现代化》 2007年第9期12-14,共3页 Computer and Modernization
关键词 聚类 K-MEANS算法 EM算法 clustering K-Means algorithm EM algorithm
  • 相关文献

参考文献6

  • 1DavidHand HeikkiMarmila PadhraicSmyth 张银奎 廖丽 宋俊译.数据挖掘原理[M].机械工业出版社,2003..
  • 2Ian H Witten,Eibe Frank.数据挖掘实用机器学习技术[M].董琳,邱泉,于晓峰,等译.北京:机械工业出版社,2006.
  • 3Dempster A P,Laird N M,Rubin D B.Maximum Likelihood from Incomplete Data via the EM Algorithm[J].Journal of the Royal Statistical Society,Series B,1977,138(39).
  • 4R A Redner,H F Walker.Mixture densities,maximum likelihood,and the EM algorithm[J].SIAM Review,1984,26:195-239.
  • 5朱周华.期望最大(EM)算法及其在混合高斯模型中的应用[J].现代电子技术,2003,26(24):88-90. 被引量:21
  • 6付淑群,曹炳元,马尽文.EM算法正确收敛性的探讨[J].汕头大学学报(自然科学版),2002,17(4):1-12. 被引量:7

二级参考文献8

  • 1[1]A.P. Dempster, N. M. Laird and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. J. R. Statist. Soc. B, 1977(39), 1-38,
  • 2[2]Xu,L. and M. I. Jordan, On the Convergence Properties of the EM Algorithm for Gaussian Mixtues[J]. Neural Compution, 1996(8), 129-151.
  • 3[3]Lei Xu. Comparatives Analysis on Convergence Rates of the EM Algorithms and its Two Modifications for Gaussian mixtures[J]. Neural Processing, 1997(6), 69-76.
  • 4[4]S. R. Gerald. Matrix Derivatives[M], New York: Dekker. 1980.
  • 5[5]Jinwen Ma, Lei Xu and Michael I. Jordan. Asymptotic Convergence Rate of the EM Algorithm for Gaussian Mixtures[J]. Neural Computation, 2000(12), 2881-2907.
  • 6Feser M, Weinstein E. Parameter estmation of superimposed signalsusing the EM algorithm [J] . IEEE Trans on Acoustics, Speech, and Signal Proceesing, 1988, 36, (4). 477-489.
  • 7Demrster A P, Larid N M, Rubin D B, et al. Maximum likelihood from Incomplete data via the EM algorithm [J]. Royal Statistical Society, 1977, 39, (11): 1-17.
  • 8Moon T K. The expectation - maximization algorithm [J] . IEEE Signal Processing Magazine, 1996,(11).

共引文献62

同被引文献57

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部