期刊文献+

基于动态双种群粒子群算法的柔性工作车间调度 被引量:3

A Dynamic Double-Population Particle Swarm Optimization Algorithm for Flexible Job-Shop Scheduling
下载PDF
导出
摘要 针对标准粒子群优化算法存在易陷入局部最优点的缺点,提出了一种基于动态双种群的粒子群优化算法(DPSO).DPSO算法将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交换信息.该算法提高了全局寻优能力,有效地避免了早熟收敛的发生.将以DPSO算法为基础的排序算法和启发式分配算法(HA)相结合形成了解决柔性工作车间调度问题的新方法(DPSO-HA).通过对算例的研究和与其他方法的比较表明,该方法是有效可行的. A dynamic double-population particle swarm optimization (DPSO) algorithm is presented to solve the problem that the standard PSO algorithm is easy to fall into a locally optimized point, where the population is divided into two sub-populations varying with their own evolutionary learning strategies and the information exchange between them. The algorithm thus improves its solvability for global optimization to avoid effectively the precocious convergence. Then, an ordering algorithm based on DPSO is integrated with the heuristic assignation (HA) algorithm to form a new algorithm DPSO-HA so as to solve the flexible job-shop scheduling problem (FJSP). The new algorithm is applied to a set of benchmark problems as instances, and the simulation results show the effectiveness and feasibility of DPSO-HA algorithm for the flexible job-shop scheduling.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期1238-1242,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60274009)
关键词 双种群 粒子群优化 学习策略 DPSO-HA算法 柔性工作车间调度 double population PSO(particle swarm optimization) learning strategy DPSO-HA algorithm flexible job-shop scheduling
  • 相关文献

参考文献10

  • 1Carlier J,Pinson E.An algorithm for solving the job-shop problem[J].Management Science,1989,35(2):164-176.
  • 2Reynolds R G.An introduction to cultural algorithms[C]//Proceedings of the Third Annual Conference on Evolutionary Programming.River Edge:World Scientific,1994:131-139.
  • 3Mastrolilli M,Gambardella L M.Effective neighborhood functions for the flexible job shop problem[J].Journal of Scheduling,2002,3(1):3-20.
  • 4Kacem I,Hammadi S,Borne P.Pareto-optimality approach for flexible job-shop scheduling problems:hybridization of evolutionary algorithms and fuzzy logic[J].Mathematics and Computers in Simulation,2002,60(3):245-276.
  • 5Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Perth:IEEE Press,1995:1942-1948.
  • 6Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington,1999:1945-1950.
  • 7Xia W J,Wu Z M.An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[J].Computers & Industrial Engineering,2005,48(2):409-425.
  • 8Najid N M,Stephane D P,Zaidat A.A modified simulated annealing method for flexible job shop scheduling problem[C]//Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.Hammamet:IEEE Press,2002:89-94.
  • 9Brandimarte P.Routing and scheduling in a flexible job shop by tabu search[J].Annals of Operations Research,1993,41(3):158-183.
  • 10Ho N B,Tay J C.GENACE:an efficient cultural algorithm for solving the flexible job-shop problem[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Portland:IEEE Press,2004:1759-1766.

同被引文献33

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部