摘要
本文提出了一种用于手写体汉字识别的多级神经网络结构(Multi-stageNeuralNetworkArchitecture,MNNA)模型。在该模型中,我们将多个神经网络和不同的特征提取方法有机地集成在一起而构成一个完整的模式识别系统。我们讨论了设计MNNA的一般原理,并提出了一个基于多层前馈神经网络的三级结构的手写体汉字识别实验系统。三种不同的特征提取方法被应用于各级子系统之中。对100个汉字15000个样本的实验我们得到了99.34%的识别率,0.36%的拒识率和0.3%的误识率。
In this paper, we propose a Multi stage Neural Network Architecture (MNNA) which integrates several neural networks and various feature extraction approaches into an unique pattern recognition system. General mechanism for designing the MNNA is presented. A three stage fully connected feedforward neural networks system is designed for Handwritten Chinese Character Recognition (HCCR). Different feature extraction methods are employed at each stage. Experiments show that the three stage neural network HCCR system has achieved impressive performance and the preliminary results are very encouraging.
出处
《通信学报》
EI
CSCD
北大核心
1997年第5期21-27,共7页
Journal on Communications
基金
国家自然科学基金
关键词
多级
神经网络结构
手写体汉字识别
特征提取
multi stage neural network architecture, handwritten Chinese character recognition, feature extraction, multi expert system, multilayer feedforward network, K L transform