期刊文献+

双光学孤子脉冲的传输特性 被引量:4

Propagation properties of a pair of soliton pulses in a fiber
原文传递
导出
摘要 本文首先指出了算法分裂步骤(split-step)Fourier法和光束传播(propagating-beam)法的等价性.利用这种算法,数字地模拟了可变等振幅孤子脉冲对在无耗光纤中的传输过程,结果证明:提高振幅可使孤子的相互作用大大减小. It is pointed ont that the Split-step Fourier Method and the Propagating-beam Method are equivalent, and namerically calculated by the method that a pair of soliton pulses propagate in a fiber with bhe initial equal changeable amplitudes-Our results show that the interaction between solitons can be much greately reduced by raising their amplitudes.
出处 《光学学报》 EI CAS CSCD 北大核心 1990年第7期651-655,共5页 Acta Optica Sinica
基金 国家自然科学基金资助项目
关键词 非线性光学 弧子 光纤弧子通信 nonlinear optics solitons optical fiber soliton communioationg.
  • 相关文献

参考文献1

  • 1J. A. Fleck,J. R. Morris,M. D. Feit. Time-dependent propagation of high energy laser beams through the atmosphere[J] 1976,Applied Physics(2):129~160

同被引文献19

  • 1刘玉敏,俞重远,杨红波,张晓光.光纤布喇格光栅非线性特性的研究[J].激光技术,2006,30(1):101-103. 被引量:9
  • 2王春雨,杨性愉.光栅色散渐减和损耗对布拉格孤子传输的影响[J].激光与红外,2006,36(5):383-385. 被引量:4
  • 3B J Eggleton, C M de sterk, R E Slusher. Nonlinear pulse propagation in Bragg gratings [ J ]. J. Opt Soc. Am. B, 1997,14 ( 11 ) : 2980 - 2995.
  • 4S Lee, R Khosravani ,J Peng, et al. Adjustable compensate on mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg gratings [ J ]. IEEE Phton. Technol Lett. , 1999,11 (8) :982 - 983.
  • 5C Martijn de Sterke, J E Sipe. Coupled modes and the nonlinear Schrodingers equation [ J ]. Physical review A. , 1990,42( 1 ) :550 - 555.
  • 6饶云江,王义平,朱涛.光线光栅原理及应用[M].北京:科学出版社,2006:4-6.
  • 7Martijn de Sterke, J E Sipe. Switching behavior of finite periodic nonlinear media [ J ]. Physical review A, 1990,42 (5) : 2558 - 2569.
  • 8C M de Sterke, K R Jackson, B D Roobert. Nonlinear coupled mode equations on a finite interal:a numerical Procedure [J]. J. Opt. Soc. A m. B,1991,8 (2):403 -412.
  • 9Amnon Yariv. Optical electronics in modem communications[ M ]. 5ed. Beijing: Publishing House of Electronics Industry,2002:530 - 537.
  • 10B J Eggleton, C M de sterk, R E Slusher. Bragg solitons in the nonlinear Schrodinger limit experiment and theory [J]. J. Opt Soc Am. B,1999,16(4) :587 -599.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部