期刊文献+

基于改进的混合高斯模型的运动目标检测 被引量:37

Moving Object Detection Based on Improved Mixture Gaussian Models
下载PDF
导出
摘要 针对现有方法在复杂多变环境下不能很好地检测出运动物体的问题,提出了改进的基于混合高斯模型的背景消减法,并对运动目标进行检测。模型初始化时,提出了一种能准确得到实际背景模型的方法;在模型更新中引入了加速因子和合理性反馈使得模型能更快、更准确地反应真实的背景。实验结果表明,同传统检测方法相比,改进的混合高斯模型方法能有效地消除物体发生运动时产生的拖影,并能很好地检测出运动物体。 In the view of the current complex environment , the detection of moving objects can not be satisfactory with traditional methods. The background of diminishing method based on the improved mixture Gaussian model was presented, and used to detect moving objects. In the initial model stage, a method which could access the accurately model was presented too. In updated model stage, the acceleration factor and reasonable feedback were introduced to reflect the true background. Experimental results show that comparing with the traditional methods, the improve mixture Gaussian model could eliminate moving objects' dragging shadow when they moving and detect moving objects well.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第9期1585-1589,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(40674060)
关键词 智能视觉监控 混合高斯模型 运动目标检测 intelligent video monitoring system, mixture Gaussian model, moving object detecting and recognition
  • 相关文献

参考文献7

  • 1胡汉南.水运交通电视监控图像目标识别技术研究[J].交通部上海船舶运输科学研究所学报,2001,24(1):3-9. 被引量:5
  • 2Kamijo S,Matsushita Y.Traffic monitoring and accident detection at intersections[ A ].In:Proceedings of the 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems[ C ],Tokyo,Japan,1999:70-78.
  • 3Haritaoglu I,Harwood D,Davis L.W4:Real-time surveillance of people and their activities[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):809-830.
  • 4Horn B K,Schunch B G.Determining optical flow[J].Artificial Intelligent,1981,17:185-203.
  • 5Chalidabhongse T H,Kim K,Harwood D,et al.A perturbation method for evaluating background subtraction algorithms[ A ].In:Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance[C],Nice,France,2003,10:11-12.
  • 6Ioannis Pavlidis,Vassilios Morellas,Panagiotis Tsiamyrtzis,et al.Urban surveillance systems:from the laboratory to the commercial world[ A ].In:Proceedings of the IEEE[ C ],2001,89 (10):1478-1497.
  • 7Daniels Hall,Nascimento J,Ribeiro P,et al.Comparison of target detection algorithms using adaptive background models[ A].In:The Second Joint IEEE International workshop on Visual Surveillance and Performance evaluation of Tracking and Surveillance[ C ],Beijing,China,2005,10(15-16):113-120.

二级参考文献4

  • 1余松煜.数字图像处理[M].电子工业出版社,1989..
  • 2苗萌.水运交通电视监控图像目标识别技术的研究[M].交通部上海船舶运输科学研究所,1996..
  • 3边肇其.模式识别[M].北京:清华大学出版社,1988..
  • 4朱志刚,徐光祐,杨波.自动交通监测系统的二维时空图象方法[J].中国图象图形学报(A辑),1996,1(2):101-107. 被引量:7

共引文献4

同被引文献252

引证文献37

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部