期刊文献+

金融领域时间序列挖掘技术研究 被引量:5

A study of time series mining technology in financial field
下载PDF
导出
摘要 数据挖掘技术近年来被广泛用于时间序列分析,时间序列挖掘技术主要包括关联分析、序列分析、分类分析、聚类分析和异常检测等五类。由于金融领域的时间序列具有一些重要的特征,因此将各种挖掘方法与金融时间序列的特征,以及各种传统的时间序列分析模型相结合,是目前金融时间序列挖掘领域的研究热点。 Data mining technology is widely used in time series analysis.Time series mining includes association analysis,sequence analysis,classification,clustering and outlier detection.As financial time series has some important features,it has become a popular topic of research to combine features of various financial time series mining approaches with the traditional time series algorithms and analysis models.
作者 黄超 龚惠群
出处 《东南大学学报(哲学社会科学版)》 CSSCI 2007年第5期36-39,共4页 Journal of Southeast University(Philosophy and Social Science)
基金 江苏省教育厅高校哲学社会科学研究指导项目"中国证券市场主要指数多标度分形相似性研究"(07SJD790052)成果之一
  • 相关文献

参考文献25

  • 1[1]D Hand,H Mannila,P Smyth.Principles of data mining[M].Massachusetts Institute of Technology,2001.
  • 2[2]E Keogh,S Kasetty.On the need for time series data mining Benchmarks:A survey and empirical demonstration[C]//Proceedings of the 8th international conference on knowledge discovery and data Mining.2002:102-111.
  • 3[3]G Das,K Lin,H Mannila,G Renganathan,P Smyth.Rule discovery from time series[C].KDD 1998:16-22.
  • 4龚惠群,黄超,彭江平.具有双时间维约束的股票序列模式挖掘[J].计算机工程,2003,29(20):87-88. 被引量:4
  • 5[6]Faloutsos C,Ranganathan M,Manolopoulos Y.Fast subsequence matching in time-series databases[C]//Proceedings of the Conference on Management of Data.1994:419-429.
  • 6[7]Chan K,Fu W.Efficient Time Series Matching by Wavelets[C]//Proceedings of the 15th IEEE international conference on data engineering.Sydney,1999:126-133.
  • 7肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 8[9]M Gavrilov,D Anguelov,P Indyk,R Motwani.Mining the stock market:which measure is best?[C]//Proceedings Of the KDD,2000:487-496.
  • 9王晓晔,孙济洲.一种时间序列表示算法及其在聚类中的应用[J].系统工程与电子技术,2006,28(8):1266-1269. 被引量:2
  • 10[11]C Li,B A Ayesian.Approach to temporal data clustering using hidden markov models[C]//International Conf.on machine learning,2000:543-550.

二级参考文献35

  • 1赵慧,侯建荣,施伯乐.随机非平稳时间序列数据的相似性研究(英文)[J].软件学报,2004,15(5):633-640. 被引量:4
  • 2Ng R.Lakshmanan L V S,Han J,et aI.Exploratory Mining and Pruning Optimizations of Constrained Associations Rules, In SIGMOD'98, 1998.
  • 3G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22.
  • 4A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183.
  • 5E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241.
  • 6Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276.
  • 7S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001.
  • 8S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001.
  • 9L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 10H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285.

共引文献64

同被引文献53

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部