摘要
采用复变函数法和多极坐标移动技术研究二维直角平面区域内可动圆形刚性夹杂在边界出平面点源载荷作用下的动态响应问题。首先构造出直角平面区域内不含有夹杂时满足直角边界应力条件的格林(Green)函数解;其次求解波动方程边值问题,建立直角平面区域内含有夹杂时满足直边界应力自由条件的散射波解,利用叠加原理写出问题的总波场。借助于夹杂边界处的位移条件和夹杂运动的动力学条件,确定夹杂运动的位移幅度和散射波解中的未知系数。给出的算例结果表明本文方法的有效实用性。
Complex function method and multi-polar coordinate transformation technology are used here to study the dynamic response of a moving rigid circular inclusion in right-angle planar space to an out-plane loading on the horizontal straight boundary. At first, the Green function of right-angle planar space which has no rigid circular inclusion is constructed; then the scattering solution which satisfy the free stress conditions of two right-angle boundaries with the rigid circular inclusion existing in the space is constructed according to the wave equation, then, the total displacement field can be constructed using overlapping principle. At last, the unknown coefficients in the scattering solution and the displaeement amplitude of the moving rigid circular inclusion can be solved with the boundary conditions at the boundary of the circular inclusion. The given example shows the validity and effectiveness of the method introduced here.
出处
《机械强度》
EI
CAS
CSCD
北大核心
2007年第5期727-732,共6页
Journal of Mechanical Strength
基金
烟台大学博士启动基金项目(JX03B5)。~~
关键词
复变函数法
多极坐标移动技术
直角平面
动夹杂
动态响应
出平面点源载荷
Complex method
Multi-polar coordinate transformation
Right-angle planar space
Moving inclusion
Dynamic response
Out-plane point loading