期刊文献+

具有无尺度拓扑与小世界效应的Sierpinski网络 被引量:4

Sierpinski networks with scale-free topology and small-world effect
下载PDF
导出
摘要 复杂网络是目前国内外研究的热点之一,而分形则被认为是上个世纪学术界的一个重要发现.根据Sierpinski垫这一著名的分形结构,构建了一类确定性网络,称为Sierpinski网络.提出了生成该网络的一个迭代算法,使抽象的网络构造变得具体而直观.研究发现该网络具有与许多现实网络相似的结构特性:幂律度分布、较高的集聚系数和较小的直径. Complex networks have attracted much research interest from different subjects and fractal has been recognized as one of the most important discoveries in the last century. In this paper, according to the famous fractals of Sierpinski Gasket, deterministic networks, called Sierpinski networks, are constructed and an iterative algorithm to generate the networks is proposed. The presented algorithm can concretize the abstract construction of Sierpinski networks. These networks have the typical properties of the real-life systems : power-law degree distribution, large clustering coefficient and small diameter
出处 《系统工程学报》 CSCD 北大核心 2007年第4期337-343,共7页 Journal of Systems Engineering
基金 国家自然科学基金重点资助项目(70431001) 国家自然科学基金资助项目(70571011)
关键词 复杂网络 无标度网络 Sierpinski分形 复杂系统 小世界效应 complex networks scale-free networks Sierpinski fractals complex systems small-world effect
  • 相关文献

参考文献20

  • 1Albert R,Barabási A L.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74(1):47-97.
  • 2吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:251
  • 3章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 4史定华.网络——探索复杂性的新途径[J].系统工程学报,2005,20(2):115-119. 被引量:24
  • 5Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440-442.
  • 6Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 7Barabási A L,Ravasz E,Vicsek T.Deterministic scale-free networks[J].Physica A,2001,299:559-564.
  • 8Comellas F,Ozón J,Peters J G.Deterministic small-world communication networks[J].Information Processing Letters,2000,76:83-90.
  • 9Dorogovtsev S N,Goltsev A V,Mendes J F F.Pseudofractal scale-free web[J].Physical Review E,2002,65:066122.
  • 10Zhang Z Z,Rong L L,Zhou S G.A general geometric growth model for pseudofractal scale-free web[J].Physica A,2007,377:329-339.

二级参考文献78

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 3Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47~97.
  • 4Dorogovtsev S N,Mendes J F F. Evolution of Networks[J]. Advances in Physics, 2002,51(4):1079~1187.
  • 5Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45(2): 167~256.
  • 6Erdos P,Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hunga- rian Academy of Sciences,1960,5:17~61.
  • 7Watts D J, Strogatz S H. Collective dynamics of ′small-world′ networks[J]. Nature, 1998,393: 440~442.
  • 8Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286: 509~512.
  • 9Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173~187.
  • 10Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters, 2000,85(21): 4633~4636.

共引文献302

同被引文献42

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部