期刊文献+

基于梯度矢量流snake与多尺度分析的血管内超声图像轮廓提取 被引量:4

Contour detection from IVUS images based on gradient vector flow snakes and multiscale analysis
下载PDF
导出
摘要 提取血管内超声(IVUS)图像的血管内腔轮廓对冠状动脉疾病的诊断有积极意义。本文提出了一种基于梯度矢量流(GVF)snake与多尺度分析的轮廓提取新方法。针对传统GVF snake的轮廓初始化、抑制噪声和伪像干扰两个难点,本文方法在如下两个方面进行了改进:第一,利用序列图像的特性产生时间方差图并得到初始轮廓,从而实现轮廓提取过程的全自动化;第二,引入多尺度分析,使GVF snake在离散小波变换得到的多尺度图中形变,从而增强了算法的鲁棒性。对仿真图像和实际IVUS图像的实验表明,该方法在轮廓提取的精度方面优于传统的GVF snake方法。 The detection of luminal borders (contours) from intravascular ultrasound (IVUS) images is helpful for the diagnosis of coronary artery diseases. A novel scheme for the contour detection is proposed based on gradient vector flow (GVF) snakes and multiscale analysis. To solve two difficulties of the traditional GVF snake, i.e. the contour initialization and the suppression of noise and artifact interference, there are two improvements in our proposed scheme. First, the procedure is made into full automation, with adopting characteristics of image sequences to yield the temporal variance image and detect an initial contour. Secondly, to enhance the robustness of the algorithm, the multiscale analysis is employed in the scheme, namely the GVF snake evolves in the muhiscale images generated from the discrete wavelet transform. The proposed scheme is verified on both synthetic images and real IVUS images. Results show that this scheme is superior to the traditional GVF snake in terms of the boundary localization.
出处 《生命科学仪器》 2007年第8期32-36,共5页 Life Science Instruments
基金 国家基础研究项目(No.2006CB705707) 国家自然科学基金(No.30570488) 上海市科技计划(No.054119612)
关键词 血管内超声 活动轮廓模型 梯度矢量流 多尺度分析 小波变换 轮廓提取 intravascular ultrasound (IVUS), active contour model (snakes), gradient vector flow (GVF), muhiscale analysis, wavelet transform, contour detection.
  • 相关文献

参考文献15

  • 1[1]G.S.Mintz,S.E.Nissen,W.D.Anderson,et al.ACC clinical expert consensus document on standards for the acquisition,measurement and reporting of intravascular ultrasound studies:a report of the American College of Cardiology task force on clinical expert consensus documents.J.Am.Coll.Cardiol.,vol.37,pp.1478-1492,2001.
  • 2[2]S.E.Nissen and P.Yock.Intravascular ultrasound:novel pathophysiological insights and current clinical applications.Circulation,vol.103,pp.604-616,2001.
  • 3[3]J.Dijkstra,G.Koning,J.C.Tuinenburg,et al.Automatic border detection in intravascular ultrasound images for quantitative measurenlents of the vessel,lumen and stent parameters.Computers in Cardiology,vol.28,pp.25-28,2001.
  • 4[4]W.Liu,J.A.Zagzebski,T.Varghese,et al.Segmentation of elastographic images using a coarse-to-fine active contour model.Ultrasound in Med.& Biol.,vol.32,pp.397-408,2006.
  • 5[5]E.Brusseau,C.L.de Korte,F.Mastik,et al,"Fully automatic luminal contour segmentation in intracoronary ultrasound imagng-a statistical approach.IEEE Trans.Med.Imag,vol.23,pp.554-566,2004.
  • 6[6]M.Kass,A.Witkin,and D.Terzopoulos.Snakes:Active contour models.Int.J.Comput.Vis.,vol.1,pp.321-331,1987.
  • 7[7]C.Xu and J.L.Prince.Snakes,shapes,and gradient vector flow.IEEE Trans.Image Processing,vol.7,pp.359-369,1998.
  • 8[8]R.F.Chang,W.J.Wu,C.C.Tseng,et al.3-D snake for US in margin evaluation for malignant breast tumor excision using Mammotome.IEEE Trans.Inf.Technol.Biomed.,vol.7,pp.197-201,2003.
  • 9[9]M.Cvancarova,F.Albregtsen,K.Brabrand,and E.Samset.Segmentation of ultrasound images of liver tumors applying snake algorithms and GVF.International Congress Series,vol.1281,pp.218-223,2005.
  • 10[10]Y.Sato,J.Chen,R.A.Zoroofi,et al.Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis.IEEE Trans.Biomed.Eng.,vol.44,pp.225-236,1997.

同被引文献31

  • 1张建伟,罗剑,夏德深.一种基于遗传算法的双T-Snake模型图像分割方法[J].中国图象图形学报(A辑),2005,10(1):38-42. 被引量:13
  • 2王长军,朱善安.基于统计模型和GVF-Snake的彩色目标检测与跟踪[J].中国图象图形学报,2006,11(1):13-18. 被引量:6
  • 3李庆,杨俊峰,江汉红,梁艳.基于Snake模型的图像分割技术[J].武汉理工大学学报(信息与管理工程版),2006,28(11):168-171. 被引量:11
  • 4于磊,范延滨,刘彩霞.GVF Snake模型时间复杂度的研究[J].计算机工程与应用,2006,42(35):33-36. 被引量:3
  • 5Kass M, Witkin A,Terzopoulos D.Snakes :active contour models[J]. International Journal of Computer Vision, 1988,1(4):321-331.
  • 6Xu C,Prince J L.Gradient vector flow:a new external force for snakes[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997 :66-71.
  • 7Greig D,Porteous B,Seheult A.Exact maximum a posteriori estimation for binary images[J].Journal of the Royal Statistical Society: Series B, 1989,51 (2) : 271-279.
  • 8Boykov Y,Funka-Lea G.G.raph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision,2006,70(2): 109-131.
  • 9Xu N,Ahuja N,Bansal R.Object segmentation using graph cuts based active contours[J].Computer Vision and Image Understanding, 2007,107(3 ) : 210-224.
  • 10Grady L.Random walks for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (11):1768-1783.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部