期刊文献+

Fe_3O_4/改性壳聚糖磁性微球对Hg^(2+)和UO_2^(2+)的吸附 被引量:18

Adsorption of Hg^(2+) and UO_2^(2+) onto Fe_3O_4/modified chitosan microspheres
下载PDF
导出
摘要 利用反相悬浮分散法和聚乙二胺改性制备成Fe_3O_4/壳聚糖磁性微球(PEMCS)以提高其氨基含量。采用X射线衍射(XRD)、红外(IR)、热重分析(TGA)等对其进行了表征,考察PEMCS对Hg^(2+)和UO_2^(2+)的吸附性能。结果表明,其吸附剂粒径小(15—30μm),吸附速率快;当氨基含量6.47mmol/g、pH<3时可选择性分离Hg^(2+)和UO_2^(2+),因Hg^(2+)能与Cl-形成络阴离子(HgCl_3^-),以离子交换机理吸附,而UO_2^(2+)则不能。对Hg^(2+)与UO_2^(2+)的饱和吸附容量q_m(mmol/g)分别为2.19与1.38。动力学数据采用Lagergrent拟合,对Hg2+与UO_2^(2+)的吸附速率常数k_(ad)(min^(-1))分别为0.087和0.055。UO_2^(2+)和Hg^(2+)可用1mol/LH_2SO_4脱附,UO_2^(2+)还可用2mol/LHCl脱附,脱附率>90%。 Fe3O4/chitosan magnetic microspheres were prepared with inverse-phase suspension dispersion method. It was modified through the reaction with poly(ethyleneimine) to increase the content of amine group of the adsorbent. The samples were characterized by X-ray diffraction (XRD), FT-IR, and thermogravimetric analysis (TGA). Adsorption performance of the modified chitosan microspheres toward Hg^2+ and UO2^2+ was investigated. The results showed that the concentration of amine group of the adsorbent was 6.47 mmol/g. The adsorption rate was fast due to their small size (15-30μm). Selective separation of Hg^2+ and UO2^2+ was achieved at pH〈3.This was due to the fact that Hg^2+ was able to form complexing anion (HgCl3) with Cl^- and adsorb onto the modified chitosan adsorbent through ion-exchange mechanism, but UO2^2+ could not. The maximum adsorption capacity (qm) was 2.19 mmol/g for Hg^2+ and 1.38 mmol/g for UO2^2+. The adsorption rate constant calculated by Lagergrent equation was 0.087 min^-1 for Hg^2+, 0.055 min^-1 for UO2^2+. More than 90% desorption efficiency for UO2^2+ and Hg^2+ was achieved using 1 mol/L H2SO4 and for UO2^2+ using 2 mol/L HCl.
出处 《核技术》 EI CAS CSCD 北大核心 2007年第9期768-772,共5页 Nuclear Techniques
基金 东华理工学院核资源与环境工程技术中心开放测试基金(070710) 国家留学基金委资助(22307S05)
关键词 改性壳聚糖 聚乙二胺 HG^2+ UO2^2+ Modified chitosan, Ethylenediamine, Hg^2+, UO2^2+
  • 相关文献

参考文献10

  • 1Oliveira L C A, Petkowicz D I, Smaniotto A, et al. Water Res, 2004, 38(17): 3699-3704.
  • 2Booker N A, Keir D, Priestley A, et al. Water Sci Technol, 1991, 23(7): 1703-1712.
  • 3Jeon C, Holl W H. Water Res, 2003, 37(19):4770-4780.
  • 4Kawamura Y, Yoshida H, Asai S, et al. Water Sci Technol, 1997, 15(7): 97-105.
  • 5Lee S T, Mi F L, Shen Y J, et al. Polymer, 2001, 42(5), 1879-1892.
  • 6Chassary P, Vincent T, Marcano J S, et al. Hydrometallury, 2005,76(1): 131-147.
  • 7阮新潮,杜予民.壳聚糖及其衍生物处理印染废水的研究进展[J].现代化工,2003,23(z1):100-102. 被引量:15
  • 8Latha G A, George K B, Kannan G K, et al. J Appl Polymer Sci, 1991, 43(6): 1159-1163.
  • 9Hennig C, Reich T, Dahn R, Scheidegger A M. Radiochimica Acta, 2002, 90(9): 653-657.
  • 10Ruiz M, Sastre A M,Guibal E. React Funct Polym, 2000, 45(3): 155-173.

二级参考文献15

  • 1[3]Mckay G, Blair H S, Gardner J. [ J ]. Journal of Polymer Science, 1983, 28:1767 - 1778.
  • 2[4]Mckay G,Blair H S,Gardner J. [J] .Journal of Polymer Science, 1984, 29:1499 - 1514.
  • 3[5]Mckay G,Blair H S,Gardner J. [J] .Journal of Polymer Science, 1985,30:4325 - 4335.
  • 4[6]Mckay G, Blair H S, Gardner J. [J]. Journal of Polymer Science, 1987, 32:1249 - 1257.
  • 5[8]Yoshida Hiroyuki, Takemori Takeshi. [ J]. Water Science and Technology, 1997,35(7) :29 - 37.
  • 6[9]Annadurai G,Chellapandian M,Krishnan M R V. [J]. Environmental Monitoring and Assessment, 1999,59( 1 ): 111 - 119.
  • 7[12]Kim C Y,Choi H M,Cho H T. [J] .Journal of Applied Polymer Sci ence, 1997,63 (6): 725 - 736.
  • 8[13]Wu Fengchin, Tsing Ruling, Juang Rueyshin. [J]. J Hazard Mater,2000,73: 63 - 75.
  • 9[16]Smith B, Koonce T, Hudson S. [ J]. Amercian Dyestuff Reporter, 1993, (10): 18 - 36.
  • 10[17]Muzzarelli R A A, Stefancich S, Delben F. [ J]. Carbohydrate Polymers, 1994,24(1):17-23.

共引文献14

同被引文献330

引证文献18

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部