期刊文献+

基于ICA和小波变换的轴承故障特征提取 被引量:7

Fault Feature Extraction of Bearing Based on ICA and Wavelet Transform
下载PDF
导出
摘要 应用独立分量分析方法和小波变换分离轴承的振动信号,提取其状态特征。并对信号进行自相关预处理,突出信号的非高斯成分,较好地满足独立分量分析的前提条件,即源信号统计独立。采用基于负熵的快速独立分量分析(ICA)算法,成功地分离出了信号的一些独立成分。对ICA处理后的分量信号进行小波变换,完成信号检测,消噪,频带分析,以获取故障信号特征,确定故障的位置和强度。研究结果表明,独立分量分析方法和小波变换能提取明显的轴承故障信号特征。 In this paper, the combination of independent component analysis (ICA) and wavelet transform are presented for separating bearing vibration signal and state feature extraction .The preprocessing obviously stands out the nongaussian signals to satisfy the ICA condition, i.e. statistical independence of sources. The fast ICA algorithm based on negentropy separates successfully independent components from the initial vibration signal. The wavelet transform of independent components processed by independent component analysis is used to singular signal inspection , signal-noise separation and signal frequency range analysis , in ordering to identify the fault position and intensity. The research result is shown that independent component analysis and wavelet transform can extracts obvious bearing fault features.
机构地区 湖北工业大学
出处 《微计算机信息》 北大核心 2007年第28期154-155,269,共3页 Control & Automation
基金 国家自然科学基金(资助号:50375047) 国家教育部重点项目(资助号:205100) 武汉市晨光计划(资助号:20065004116-30)
关键词 独立分量分析 小波变换 故障诊断 特征提取 independent component analysis wavelet transforrn aalt diagnosis feature extraction
  • 相关文献

参考文献6

二级参考文献23

  • 1季忠,金涛,杨炯明,秦树人.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程,2005,16(1):50-53. 被引量:23
  • 2马双宝,王攀,曾勇.基于Labview7.0虚拟信号发生器的实现[J].微计算机信息,2005,21(1):89-90. 被引量:11
  • 3夏文静,傅行军.小波变换在转子动静碰摩故障诊断中的应用[J].汽轮机技术,2005,47(3):215-218. 被引量:5
  • 4张常年.减少声音信号噪声干扰的处理方式的研究[J].北方工业大学,1999,6(1):1-2.
  • 5Mallat S G A. Theory for Multiresolution Signal Decomposition:The Wavelet Represention [ J] IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11 : 674--693.
  • 6Tuteur T W. Wavelet Transforms in Signal Detection [ A ].Proc. of the Inter. Conf. onWavelet [ C ]. France: Marseille,1987. 132--138.
  • 7Mallat S,Hwang W L. Sing ularity Detection and Processing with Wavelet [ J ]. IEEE Trans on IT, 1992,38 ( 2 ) : 617--643.
  • 8Mallat S and S Zhong.Complete singularity detection and processing with wavelets[J].IEEE Trans.on Information Theory,38(2),617~443,1992
  • 9程正兴.小波变换与工程应用[M].北京:科学出版社,2000,6..
  • 10P. Comon, Independent component analysis, A new concept?Signal Processing,Vol. 36, pp. 287-314, 1994.

共引文献59

同被引文献61

引证文献7

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部