摘要
The friction and wear behaviors of tribological mechanical components were studied on a four-ball tester under dry conditions, and the wear mechanism was analyzed by observed worn surface using a scanning electron microscope (SEM). It was found that the friction and wear properties were improved by the addition ofnano HA particles. The composite containing 1 wt% nano HA had the optimum friction coefficient. It is also found that the addition of nano HA increases the wear resistance of oure PVA-H and PVA-H composites.
The friction and wear behaviors of tribological mechanical components were studied on a four-ball tester under dry conditions, and the wear mechanism was analyzed by observed worn surface using a scanning electron microscope (SEM). It was found that the friction and wear properties were improved by the addition ofnano HA particles. The composite containing 1 wt% nano HA had the optimum friction coefficient. It is also found that the addition of nano HA increases the wear resistance of oure PVA-H and PVA-H composites.
基金
the National Natural Science Foundation of China(No.30300078)