摘要
本文讨论了如下广义特征值反问题及最佳逼近.给定矩阵X和对角阵Λ,求Hermite广义Hamilton矩阵广义特征值反问题AX=BXΛ的解(A,B),利用矩阵的奇异值分解和矩阵分块法,给出了其解的一般表达式.并且考虑了解集合对给定矩阵的最佳逼近问题,给出了惟一最佳逼近解的表达式.
In this paper, we first consider the inverse generalized eigenvalue problem and optimal approximation as follows:Given a matrix X and a diagonal matrix A, the solution (A, B) of the hermite generalized hamilton matrix for inverse generalized eigenvalues problem AX = BXA are considered. Based on singular values decomposition of a matrix , the general form of such solutions is established . The best approximation to any given matrix is also considered and the unique solution has been obtained.
出处
《漳州师范学院学报(自然科学版)》
2007年第3期15-19,共5页
Journal of ZhangZhou Teachers College(Natural Science)
基金
河南省高校杰出科研人才创新工程资助项目(2004KYCX005)