期刊文献+

利用MODFLOW模拟井流的误差特征 被引量:4

Characteristics of Error in Numerical Modeling of Well Flow with MODFLOW
原文传递
导出
摘要 MODFLOW是目前被广泛使用的地下水流数值模型。为分析MODFLOW模拟井流的误差特征,对承压含水层单井抽水问题进行了不同网格尺度下的4组模拟试验。对比模拟水头值与Theis公式解析解,我们将误差分为3类:求解误差、插值误差和模型刻画误差。求解误差是运行MODFLOW核心程序直接产生的,而对格点之间水头分布进行评估时将产生插值误差.最大误差发生在井点位置,这是由数值模型中井周附近水流刻画不合理造成的。 MODFLOW is widely used in numerical modeling of groundwater flow. In order to analyze the characteristics of error in well flow simulation with MODFLOW, 4 groups of numerical experiments with different scale of grid cell has been conducted. Comparing the numerical results with the analytical solutions from Theis's Equation, three types of errors are divided, i. e. solution error, interpolation error and depiction error. Solution error is directly brought by MODFLOW core program, whereas interpolation error is born when estimating the head distribution between adjacent cell centers. Biggest error occurs from the hydraulic head within the well by unreasonable depiction of near-well flow in numerical modeling.
出处 《工程勘察》 CSCD 北大核心 2007年第10期29-32,37,共5页 Geotechnical Investigation & Surveying
基金 国家自然科学基金(40542011)资助
关键词 MODFLOW 数值模拟 井流 误差 MODFLOW numerical modeling well flow error
  • 相关文献

参考文献5

二级参考文献3

共引文献111

同被引文献31

  • 1黎明,陈崇希,张明江.新疆渭干河流域地下水三维流数值模拟[J].地质科技情报,2005,24(1):74-78. 被引量:9
  • 2王同科,谷同祥.Poisson方程差分格式的SOR方法中最优松弛因子的回归分析方法[J].工程数学学报,2005,22(3):474-480. 被引量:6
  • 3段水强.德令哈盆地湖泊湿地变化与生态需水初步研究[J].中国农村水利水电,2005(9):22-23. 被引量:14
  • 4陈崇希,王旭升,胡立堂.地下水流数值模拟中抽水井水位的校正[J].水利学报,2007,38(4):481-485. 被引量:16
  • 5McDonald M G, I-Iarbaugh A W. A modular three- dimensional finite-difference groundwater flow model [ R ]. Washington DC : U S Geological Survey, 1988.
  • 6Mary C H. Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure [J]. Water Resources Research, 1990, 26 (9) :1961 - 1969.
  • 7H G Weinstein, H L Stone, T Y Kwan. Iterative procedure for solution of systems of parabolic andelliptic equations in three dimensions [ J]. Industrial and Engineering, 1969, 8(2) :281 -287.
  • 8F Salmasi, H M Azamathulla. Determination of optimum relaxation coefficient using finite difference method for groundwater flow [ J]. Arabian Journal of Geosciences, 2013, 8:3409-3415.
  • 9Carlos A N Costa, Itamara S Campos, Jesse C Costa, et al. Iterative methods for 3D implicit finite- difference migration using the complex Pad6 approximation [ J ]. Journal of Geophysics and Engineering, 2013, 104 : 1 - 17.
  • 10Y Saad. Practical use of polynomial preconditionings for the conjugate gradient method [ J ]. Society for Industrial and Applied Mathematics, 1985,6 (4) : 865 - 881.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部