摘要
在光束整形衍射光学元件的设计中,为同时减小输出光束的均方根误差和顶部不均匀度值,提出了模糊控制迭代算法(IAFC)。在盖师贝格-撒克斯通(Gerchberg-Saxton,G-S)算法的基础上,提出了平滑修正法,可有效改善输出光束的顶部均匀度,但却增大了均方根误差值。模糊控制迭代算法依据模糊控制理论,通过有效结合盖师贝格-撒克斯通算法和平滑修正法来同时降低均方根误差和顶部不均匀度值。计算机设计的结果表明,利用模糊控制迭代算法可以得到非常理想的输出光束,其均方根误差和顶部不均匀度值分别为0.75%和0.46%,能量转换效率可达94.91%。为光束整形衍射光学元件的设计提供了一种有效的新算法。
Iterative algorithm based on fuzzy control theory (IAFC) is put forward for designing diffractive optical elements for laser beam shaping, aiming at decreasing both mean square error and top beam uniformity of the output beam. Derived from Gercherg-Saxton (G-S) algorithm, the profile-smoothing algorithm is put forward, which can effectively improve the uniformity of top beam, but has a poor performance at the mean square error. Combining the profile-smoothing algorithm and the Gercherg-Saxton algorithm by fuzzy control theory, the iterative algorithm based on fuzzy control theory, can decrease both mean square error and uniformity of beam top. Computer-designed result by using the iterative algorithm based on fuzzy control theory error and top beam uniformity of beam are 0.75 % and 0.46 % up to 94.91%. leads to an excellent output beam, and the mean square respectively, while the energy conversion efficiency is
出处
《光学学报》
EI
CAS
CSCD
北大核心
2007年第9期1682-1686,共5页
Acta Optica Sinica
关键词
光学设计
衍射光学元件
光束整形
模糊控制迭代算法
盖师贝格一撒克斯通算法
optical design
diffractive optical elements (DOE)
beam shaping
iterative algorithm based on fuzzy control theory
Gerchberg-Saxton algorithm