摘要
给出一种计算描述标量湍流脉动的截尾Gauss概率密度函数的待定参数的方法.通过将关于待定参数的代数方程组表示成适于求解的形式,综合应用牛顿法、牛顿下山法和阻尼牛顿法等迭代算法,并恰当地选取待定参数的迭代初值,获得了在标量平均值及其脉动均方值的各种取值条件下待定参数的相应数值.
This paper presents a method to determine the unknown parameters for the clipped Gauss probability density function, used to describe the turbulent fluctuation of a scalar. The algebraic equations for the unknown parameters are properly expressed in a form convenient to solution. The Newton method, Newton downhill method, and damped Newton method are jointly used in the iterative solution for the equations. The initial values for the iteration are chosen properly. The unknown parameters are obtained as different mean values and mean squares values from fluctuating values of the scalar.
出处
《力学与实践》
CSCD
北大核心
2007年第1期64-68,57,共6页
Mechanics in Engineering
基金
国家自然科学基金(50576044)
关键词
概率密度函数
截尾Gauss分布
湍流
多相流动与燃烧
probability density function, Clipped Gauss distribution, turbulent, multiphase flow and combustion