期刊文献+

基于BP神经网络的孔隙充水矿井涌水量预测 被引量:24

Prediction of inrush water of mine with pore water yield based on BP artificial neural network
下载PDF
导出
摘要 文章分析了孔隙充水矿井的充水水源和通道,利用非线性的BP人工神经网络建立了徐州韩桥煤矿涌水量短期预测模型,选取每天的降水量作为影响因子,用已有的涌水量资料训练得到权值和阈值来表示充水通道,并对-200m水平、-270m水平、-330m水平和全矿井涌水量进行了预测。结果显示,涌水量的预测值与实测值吻合得较好,说明该模型具有一定实用性。 In this paper, sources and channels of water bursting of mine with pore water yield were analyzed and basic theory of artificial neural network was used. The short-time prediction model of mine inrush in the Hanqiao colliery was also established. Daily precipitation within a period of time was chosen as an influence factor. Weight and threshold, which were obtained from training known data of precipitation, were expressed as channels of water inrush. The mine inrush water of - 200 m level, - 270 m level, - 330 m level and the whole mine was predicted. The results show that it is right and feasible to build the BP neural network model and predict mine inrush water.
机构地区 中国矿业大学
出处 《水文地质工程地质》 CAS CSCD 北大核心 2007年第5期55-58,共4页 Hydrogeology & Engineering Geology
基金 国家自然科学基金重点项目"水资源保护性煤炭开采基础理论与应用研究"(50634050) 国家重点基础研究发展计划"973"计划(2007CB209401)
关键词 BP人工神经网络 孔隙充水矿井 涌水量 预测模型 韩桥煤矿 BP artificial neural network mine with pore water yield mine inrush water prediction model Hanqiao colliery
  • 相关文献

参考文献7

二级参考文献11

共引文献80

同被引文献278

引证文献24

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部