期刊文献+

亚临界水-火焰离子化检测-柱后分流色谱分离某些醇、酚和羧酸类化合物 被引量:3

Separation of Some Alcohols, Phenols and Caboxylic Acids by Coupling of Subcritical Water Chromatography and Flame Ionization Detection with Post-column Splitting
下载PDF
导出
摘要 采用柱前预热和柱后分流技术,构建了亚临界水-氢火焰离子化检测器色谱系统(SubWC—FID)。采用Polymerx RP-1聚合物色谱柱和纯水流动相,在亚临界状态下(柱温160~210℃),分离了某些醇、酚和羧酸类化合物,优化了FID稳定工作条件,考察了柱温、流动相流速和分流比对样品分离的影响。结果表明:在不高于1.48mL/min的流动相流速下,柱后分流模式的FID系统能稳定工作,方法的线性动力学范围在2~3个数量级之间,在分流比为1:20时,乙醇、苯酚和乙酸的检出限分别为17、54和68ng。 A coupling system of subcritical water chromatography and flame ionization detection (SubWC- FID) with pre-column heating and post-column splitting mode has been established. Separations of some alcohols, phenols and carboxylic acids have been performed on a Polymerx RP-1 (PS-DVB) column with the column temperature ranging from 160℃ to 210℃ by using the SubWC-FID system and pure water as mobile phase. The stable working conditions of FID have been optimized and the effects of column temperature, flow rate of mobile phase and splitting ratio on the sample separations have been examined. The results indicate that the FID system with post-column splitting is stable even at flow-rate of mobile phase as high as 1.48 mL/min. The linear dynamic ranges are between two and three orders of magnitude and the limits of detection of ethanol, phenol and acetic acid at splitting ratio of 1:20 are 17 ng, 54 ng and 68 ng, respectively.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2007年第9期1335-1338,共4页 Chinese Journal of Analytical Chemistry
关键词 亚临界水色谱 火焰离子化检测器 分流模式 醇类 酚类 羧酸类 Subcritical water chromotagraphy, flame ionization detector, splitting mode, alcohols, phenols, caboxvlic acids
  • 相关文献

参考文献10

  • 1Yang Y,Belghazi M,Lagadec A,Miller D J,Hawthorne S B.J.Chromatogr.A,1998,810(1/2):149-159
  • 2Smith R M,Burgess R J.J.Chromatogr.A,1997,785(1/2):49-55
  • 3黄卫红,赵柳青,赵天珍,王力,陆晓华.土壤中不同极性污染物的亚临界水选择性萃取[J].分析化学,2006,34(8):1187-1189. 被引量:5
  • 4Miller D J,Hawthorne S B.Anal.Chem.,1997,69(4):623-627
  • 5Kephart T S,Dasgupta P K.Talanta,2002,56(6):977-987
  • 6Greibrokk T,Andersen T.J.Chromatogr.A,2003,1000(1/2):743-755
  • 7Yang Y,Jones A D,Mathis J A,Francis M A.J.Chromatogr.A,2002,942(1/2):231-236
  • 8Guillarme D,Heinisch S,Gauvrit J Y,Lanteri P,Rocca J L.J.Chromatogr.A,2005,1078(1/2):22-27
  • 9Yan B,Zhao J,Brown J S,Blackwell J,Carr P W.Anal.Chem.,2000,72(6):1253-1262
  • 10Coym J W,Dorsey J G.J.Chromatogr.A,2004,1035(1):23-29

二级参考文献11

  • 1朱晓兰,蔡继宝,杨俊,苏庆德.加速溶剂萃取-气相色谱法测定土壤中的有机磷农药残留[J].分析化学,2005,33(6):821-824. 被引量:65
  • 2Peltonen K,Kuljukka T.J.Chromatogr.A,1995,710:93~96
  • 3Luque-García J L,de Castro M D L.J.Chromatogr.A,2002,959:25~35
  • 4Kubatova A,Miller D J,Hawthorne S.J.Chromatogr.A,2001,923:187~194
  • 5Hawthorne S,Grabanski C,Martin E,Miller D J.J.Chromatogr.A,2000,892:421~433
  • 6Richter P,Sepulveda B.J.Chromatogr.A,2003,994:169~177
  • 7Crescenzi C,Corcia A,Nazzari M,Samperi R.Anal.Chem,2000,72:3050~3055
  • 8Lamm L J,Yang Y.Anal.Chem,2003,75:2237~2242
  • 9Method 8081A,US Environmental Protection Agency,SW-846 on CD-ROM,May 1996,National Technical Information Service (NTIS),US,Department of Commerce,Springfield,VA.
  • 10Method 3540C,US Environmental Protection Agency,SW-846 on CD-ROM,May 1996,National Technical Information Service (NTIS),US,Department of Commerce,Springfield,VA.

共引文献4

同被引文献48

  • 1Sevilla M,Fuertes A B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J].Chemistry-A European Journal,2009,15(16):4195-4203.
  • 2Ryua J,Suha Y W,Suha D J.Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds[J].Carbon,2010,48(7):1990-1998.
  • 3Sun X,Li Y.Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J].Angewandte Chemie International Edition,2004,43(5):597-601.
  • 4Shaka S,Ueno T.Chemical conversion of various celluloses to glucose and its derivatives in supercritical water[J].Cellulose,1999,6(3):177-191.
  • 5Titirici M M,Thomas A,Antonietti M.Back in the black:hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2problem[J].New Journal of Chemistry,2007,31(6):787-789.
  • 6Yoshii N,Miura S,Okazaki S,et al.A molecular dynamics study of dielectric constant of water from ambient to sub and supercritical conditions using a fluctuating-charge potential model[J].Chem Phys Lett,2001,345(1/2):195-200.
  • 7Kochk,Ensikat H J.The hydrophobic coatings of plant surfaces:Epicuticular wax crystals and their morphologies crystallinity and molecular self-assembly[J].Micron,2008,39(2):759-772.
  • 8Koch K,Bhushan B,Barthlott M.Multifunctional surface structures of plants:an inspiration for biomimetics[J].Prog Mater Sci,2009,54(3):137-178
  • 9Gao Y,Wang X H,Wang J,et al.Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J].Energy,2013,58(2):376-383
  • 10Wu D,Fu R,Yu Z.Organic and carbon aerogels from the Na OHcatalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol[J].Appl Polym Sci,2005,96(4):1429-1435.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部