期刊文献+

基于CRBF神经网络的分类算法及应用

Classification Algorithm and Application of Neural Network Based on Cosine Radial Basis Function
下载PDF
导出
摘要 通过对CRBF的分析研究,提出一种基于CRBF神经网络的分类算法。采用数学模型和几何模型构造其应用模型,通过分类算法的训练过程修改应用模型中的相关参数,使得分类结果更趋合理。通过CENTUM3000和Visual Basic6.0平台开发了化工厂爆炸监控系统。实践表明,分类结果与监控设备运行结果吻合得很好,满足了工厂监控系统的实际需求,证明该分类算法和应用模型具有较高的理论和实用价值。 Based on the analysis and study of cosine radial basis function(CRBF), a classification algorithm of neural network based on cosine radial basis function is proposed. Application model is constructed by mathematical model and geometric model, and the parameters of application model are modified through the training process of classification algorithm to make the classification result more reasonable. Classification result and supervision equipment are consistent after application of blast supervision system based on CENTUM CS3000 and Visual Basic 6.0, the factual demand is satisfied. The classification and application model are proved to be highly effective and valuable in practice and academic study.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第17期225-227,共3页 Computer Engineering
基金 国家"863"计划基金(2001AA113182) 陕西省科技攻关计划基金(2002K06-G5)
关键词 神经网络 CENTUM CS3000 径向基函数 OPC neural network CENTUM CS3000 radial basis function OPC
  • 相关文献

参考文献5

  • 1林雪纲,郑成兴,窦旻,许榕生.基于FIR神经网络的以太网网络流量预测[J].计算机工程,2006,32(8):124-126. 被引量:6
  • 2Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.
  • 3张德贤.基于输出层权值解析修正的神经网络有效训练[J].计算机工程与应用,2005,41(4):82-84. 被引量:2
  • 4Andrew I.Han N,Danilo P,et al.A Data-reusing Nonlinear Gradient Descent Algorithm for a Class of Complex-valued Neural Adaptive Filters[J].Neural Processing Letters of IEEE,2003,17(1):85-91.
  • 5Abrar S,Morrissey O,Rayner T.Aggregate Agricultural Supply Response in Ethiopia:A Farm-level Analysis[J].Journal of International Development J.Int.Dev.,2004,16(1):605-620.

二级参考文献11

  • 1S V Kamarthi ,S Pittner.Accelerating neund network training using weight extrapolation[J].Neural Networks, 1999; 12(12) : 1285-1299.
  • 2G Deco,W Finnoff,H G Zimmermann.Unsupervised mutual information criterion for elimination of overtraining in supervised multilayer networks[J].Neural Computation, 1995 ; (7) :86-107.
  • 3Hongiun Lu et al.A conneetionist approach to data mining[C].In: Proceedings of the 21^nd VLDB Conference,Zurish,Swizerland,1995: 81-106.
  • 4Scott Weaver, Leemon Baird, Marios Polycarpou. Using localizing learning to improve supervised learning algorithms[J].IEEE Transaction on neural networks,2001 ; 12(5 ) : 1037-1046.
  • 5Chi-Tat Tommy,W S Chow.Adaptive regularization parameter selection method for enhancing generalization capability of neural networks[J].Artifieial Intelligence, 1999 ; 107 (2) : 347-356.
  • 6Franco Scarselli,Ah Chung Tsoi.Universal approximation using feed forward neural networks :A survey of some existing methods and some new results[J].Neural Networks, 1998 ; 11 ( 1 ) : 15-37.
  • 7Jie Zhang,A J Morris.A sequential learning approach for single hidden layer neural networks[J].Neural Networks, 1998 ; 11 ( 1 ) :65-80.
  • 8Beran J,Sherman R.Long-range Dependence in Variable-bit-rate Video Traffic[J].IEEE/ACM Trans.on Communications,1995,43(2):1566-1579.
  • 9Back A D,Tsio A C.Aspects of Adaptive Learning Algorithms for FIR Feedforward Networks[C].Proc.of International Conference on Neural Information Processing,1996,2:1311-1316.
  • 10Hall J,Mars P.The Limitations of Artificial Neural Networks for Traffic Prediction[C].Proc.of the Third IEEE Symposium of Computers and Communications,1998.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部