期刊文献+

多维点集的特征正交投影分类模型

A Classification Method of Characteristic Orthogonal Projection for Multidimensional Point Set
下载PDF
导出
摘要 分类是智能信息处理的重要内容。提出一种多维点集的分类方法——多维点集的特征投影分类模型,该方法的基本思想是:首先通过特征正交投影把高维点集的分类问题转化为一维点集的分类问题,然后提出一个一维点集的分类模型。为解决分类问题提供一种较简便的数学工具。 the classification is an important part of intelligent information deposition. A classification method for multidimensional point set is presented in this paper in which the classification problem of multidimensional point set is converted into one of single dimensional point set by the characteristic orthogonal projection, then a classification model for single dimensional point set is put forward that provides a mathematical tool for the solution of classification problem.
出处 《计算技术与自动化》 2007年第3期44-47,共4页 Computing Technology and Automation
关键词 信息处理 目标分类集 正交投影 密度分布函数 分类模型 information deposition object classification set orthogonal projection density distribution function classificationmodel
  • 相关文献

参考文献6

二级参考文献14

  • 1[2]Jianwei Han, M Kamber. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers, 2000
  • 2[3]J Grabmeier, A Rudolph. Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 2002, 6(4): 303~360
  • 3[4]A K Jain, M N Murty, P J Flynn. Data clustering: A review. ACM Computing Surveys, 1999, 31(3): 264~323
  • 4[5]J MacQueen. Some methods for classification and analysis of multivariate observations. In: L M Le Cam, J Neyman eds. Proc of the 5th Berkeley Symp on Mathematics, Statics and Probability, Vol 1. Berkeley: Berkeley University of California Press, 1967. 281~298
  • 5[6]J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981
  • 6[7]L Kaufman, P J Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990
  • 7[8]M Ester, H P Kriegel, J Sander et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, J Han, U Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining (KDD-96). Menlo Park: AAAI Press, 1996, 226~231
  • 8[9]M Ankerst, M Breuning, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: A Delis, C Faloutsos, S Ghandeharizadeh eds. Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1999. 49~60
  • 9[10]W Wang, J Wang, R Muntz. STING: A statistical information grid approach to spatial data mining. In: M Jarke, M J Carey, K R Dittrich et al eds. Proc of the 23rd IEEE Int'l Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1997, 186~195
  • 10[11]Z Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部